Elsevier

Ultramicroscopy

Volume 46, Issues 1–4, October 1992, Pages 317-334
Ultramicroscopy

Factors influencing the precision of quantitative scanning transmission electron microscopy

https://doi.org/10.1016/0304-3991(92)90022-CGet rights and content

Abstract

The scanning transmission electron microscope (STEM) can be used for accurate and reproducible mass measurements. Here we analyse the major sources of systematic errors. Focus-dependent changes of the magnification can be corrected on-line by monitoring the objective-lens current. Post-specimen field effects are shown to be negligible for the Vacuum Generators STEM HB5 used. Operating conditions of the detector, a scintillator-photomultiplier combination, are critical and need to be calibrated for each experiment. The influence of sample purity, mass-loss kinetics and glutaraldehyde fixation on mass values is evaluated for several biological specimens, in particular for the widely used mass standard TMV. Possible errors arising from the use of mass standards to compensate for both instrumental and specimen-related uncertainties are considered.

References (49)

  • W. Baschong et al.

    J. Struct. Biol.

    (1991)
  • J.-M. Peters et al.

    J. Mol. Biol.

    (1992)
  • A. Engel et al.

    J. Ultrastruct. Res.

    (1980)
  • M.W. Mosesson et al.

    J. Mol. Biol.

    (1981)
  • J.F. Hainfeld et al.

    FEBS Lett.

    (1988)
  • A.C. Steven et al.

    J. Biol. Chem.

    (1983)
  • R.A. Cross et al.

    J. Mol. Biol.

    (1991)
  • R. Rachel et al.

    FEMS Microbiol. Lett.

    (1983)
  • P.D. Lampe et al.

    J. Struct. Biol.

    (1991)
  • M. Karas et al.

    Anal. Chim. Acta

    (1990)
  • A. Engel

    Ultramicroscopy

    (1978)
  • R. Reichelt et al.

    Ultramicroscopy

    (1984)
  • P. Dierckx

    Computer Graphics and Image Processing

    (1982)
  • A. Engel et al.

    Ultramicroscopy

    (1981)
  • W. Baumeister et al.

    J. Mol. Biol.

    (1986)
  • A. Engel

    Micron

    (1982)
  • E. Di Capua et al.

    J. Mol. Biol.

    (1982)
  • T. Schnyder et al.

    J. Biol. Chem.

    (1988)
  • A. Angel et al.

    J. Ultrastruct. Res.

    (1984)
  • G.B. Whitman et al.

    J. Submicrosc. Cytol.

    (1983)
  • E.G. Hutchinson et al.

    EMBO J.

    (1989)
  • R. Freeman et al.

    J. Microscopy

    (1981)
  • J.S. Wall

    Scanning Electron Microsc.

    (1979)
  • R.L. Duda et al.

    Proc. Natl. Acad. Sci. USA

    (1985)
  • Cited by (144)

    • Fibre diffraction studies of biological macromolecules

      2017, Progress in Biophysics and Molecular Biology
    • Very high-density lipoprotein and vitellin as carriers of novel biliverdins IXα with a farnesyl side-chain presumably derived from heme A in Spodoptera littoralis

      2016, Insect Biochemistry and Molecular Biology
      Citation Excerpt :

      Recording doses varied from 300 to 660 electrons/nm2. Beam-induced mass-loss was determined as described (Kayser et al., 2009; Müller et al., 1992). Tobacco mosaic virus (kindly supplied by R. Diaz-Avalos, Janelia Research Campus, Virginia, USA) was used for absolute mass calibration.

    • Optimizing the design of protein nanoparticles as carriers for vaccine applications

      2015, Nanomedicine: Nanotechnology, Biology, and Medicine
    View all citing articles on Scopus
    View full text