Elsevier

Journal of Biomechanics

Volume 34, Issue 11, November 2001, Pages 1387-1398
Journal of Biomechanics

Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking

https://doi.org/10.1016/S0021-9290(01)00105-1Get rights and content

Abstract

Walking is a motor task requiring coordination of many muscles. Previous biomechanical studies, based primarily on analyses of the net ankle moment during stance, have concluded different functional roles for the plantar flexors. We hypothesize that some of the disparities in interpretation arise because of the effects of the uniarticular and biarticular muscles that comprise the plantar flexor group have not been separated. Furthermore, we believe that an accurate determination of muscle function requires quantification of the contributions of individual plantar flexor muscles to the energetics of individual body segments. In this study, we examined the individual contributions of the ankle plantar flexors (gastrocnemius (GAS); soleus (SOL)) to the body segment energetics using a musculoskeletal model and optimization framework to generate a forward dynamics simulation of normal walking at 1.5 m/s. At any instant in the gait cycle, the contribution of a muscle to support and forward progression was defined by its contribution to trunk vertical and horizontal acceleration, respectively, and its contribution to swing initiation by the mechanical energy it delivers to the leg in pre-swing (i.e., double-leg stance prior to toe-off). GAS and SOL were both found to provide trunk support during single-leg stance and pre-swing. In early single-leg stance, undergoing eccentric and isometric activity, they accelerate the trunk vertically but decelerate forward trunk progression. In mid single-leg stance, while isometric, GAS delivers energy to the leg while SOL decelerates it, and SOL delivers energy to the trunk while GAS decelerates it. In late single-leg stance through pre-swing, though GAS and SOL both undergo concentric activity and accelerate the trunk forward while decelerating the downward motion of the trunk (i.e., providing forward progression and support), they execute different energetic functions. The energy produced from SOL accelerates the trunk forward, whereas GAS delivers almost all its energy to accelerate the leg to initiate swing. Although GAS and SOL maintain or accelerate forward motion in mid single-leg stance through pre-swing, other muscles acting at the beginning of stance contribute comparably to forward progression. In summary, throughout single-leg stance both SOL and GAS provide vertical support, in mid single-leg stance SOL and GAS have opposite energetic effects on the leg and trunk to ensure support and forward progression of both the leg and trunk, and in pre-swing only GAS contributes to swing initiation.

Introduction

Studies have identified strong correlations between the net ankle moment and power produced by the ankle plantar flexors and gait performance in several patient populations (Mueller et al., 1995; Nadeau et al., 1999; Olney et al., 1990; Olney et al., 1994; Winter et al., 1990). Nevertheless, the functional role of the ankle muscles during gait (normal and pathological) has remained controversial. Previous experimental (e.g. Winter, 1991; Perry, 1992) and theoretical (e.g. Kepple et al., 1997; Riley and Kerrigan, 1999) studies have been limited to assessing the functional role of the ankle plantar flexors as a single unit because the analyses were based on the net ankle joint moment derived from inverse dynamics. Biomechanical analyses based on net ankle (and knee) joint moments cannot elucidate the potentially different mechanical contributions of individual uniarticular and biarticular plantar flexor muscles to the overall gait performance (e.g. support and forward progression). We believe that the lack of consensus regarding the functional roles of the plantar flexor muscles results in part because of the difficulty in rigorously quantifying a muscle's contribution to the individual body segment energetics (i.e. acceleration and power) and in part because individual muscles within the plantar flexor group likely contribute to the body segment energetics differently.

The three main theories advanced in the literature have been that the ankle plantar flexor group: (1) provide a controlled roll-off (e.g. Sutherland et al., 1980; Perry, 1992), (2) actively provide forward progression or push-off (e.g. Winter, 1983; Kepple et al., 1997) and (3) accelerate the leg into swing (e.g. Hof et al., 1993; Meinders et al., 1998). These theories are not likely to be mutually exclusive, as the plantar flexor group may contribute to each of the proposed functions, either by individual plantar flexor muscles performing the different functions or by synergistic actions between them.

The controlled roll-off theory describes forward progression during single-leg stance as a controlled fall (Perry, 1992). Thus, the proposed primary action of the ankle plantar flexors during the controlled roll-off is to decelerate tibia rotation and prevent knee flexion as the body rotates over the stance leg. Forward progression is then the result of a passive mechanism as the body moves forward as a result of momentum and inertia. Supporting evidence for the controlled roll-off theory is found in a pair of clinical studies using tibial-nerve blocks to temporarily paralyze the plantar flexors (Simon et al., 1978; Sutherland et al., 1980). Both studies found that in the absence of normal plantar flexor activity, walking velocity increased, leading them to conclude that the plantar flexors restrain forward momentum rather than propel the body forward. However, during both studies, walking mechanics (e.g. step length, step time, joint angles) were altered by the nerve blocks, making comparisons with unaltered plantar flexor function difficult.

The active push-off theory hypothesizes that the energy generated by the plantar flexor group is transferred to the trunk to provide support and forward progression. Winter (1983) examined the power output of the net ankle and knee joint moments during normal gait and found that the ankle moment was the primary source of positive work, and that plantar flexor activity coincided with the second peak of the vertical ground reaction force. He concluded that an active plantar flexor push-off, rather than a passive roll-off, provides forward progression. Supporting evidence was provided in a recent theoretical study that showed the plantar flexor moment was the primary contributor to the accelerations of the head–arms–trunk segment in both the horizontal (considered analogous to forward progression) and vertical (considered analogous to support) directions during the second-half of the single-leg stance phase (Kepple et al. 1997).

The final theory suggests that the primary function of the ankle plantar flexors is to accelerate the leg into swing, and forward progression is provided later in the swing phase as energy from the swing leg is transferred to the trunk (Hof et al., 1993, Meinders et al., 1998). Meinders et al. (1998) performed inverse dynamics and mechanical energy analyses to show that, although the net ankle moment generated the majority of the mechanical work during the push-off phase, only a small portion of this mechanical energy was transmitted to the trunk segment. Instead, their data showed that the mechanical work generated by the net ankle moment was stored in the swing leg as kinetic and potential energy. Similarly, Hof et al. (1993) examined correlations between changes in body segment mechanical energy and work of the triceps surae group determined from electromyogram to force processing and concluded that the primary function of the ankle plantar flexors is to provide the energy necessary for swing leg initiation.

The three different theories for the role of the plantar flexors in gait may not, however, be mutually exclusive since the uniarticular plantar flexors (e.g., soleus) and biarticular plantar flexors (e.g., gastrocnemii) individually or working in synergy may contribute to each of the proposed theories above. However, net joint torque-based analyses, as used in the studies proposing these theories, cannot differentiate between the contributions of the uniarticular and biarticular plantar flexors to task performance and, therefore, cannot identify their functional roles.

To date, no study has quantified the contributions of individual plantar flexor muscles to the acceleration of (and power delivery to) the individual body segments during walking, which are crucial to understanding the distinct roles of the uniarticular and biarticular plantar flexors. Previous studies have suggested functional roles for individual muscles based on correlational-type analyses (e.g., correlation of EMG activity with kinematics and kinetics, Pedotti, 1977; Winter, 1991; Perry, 1992). However, a muscle force causes significant reaction forces throughout the body, which are either ignored in such analyses or, at best, recognized but provide no solution for calculating them. Similarly, solving the force-sharing problem alone (e.g. Anderson and Pandy, 2001), like inverse dynamics-based analyses, does not provide insight into causal relationships between muscle activity and task performance. But, acceleration and power analyses (Fregly and Zajac, 1996) of forward dynamics simulations of walking, that are driven by individual muscles, can identify how each muscle contributes to the acceleration and power of the leg segments and the trunk to affirm or refute the above three theories.

Therefore, the objective of this study was to use a forward dynamics based analysis to identify how the individual uniarticular and biarticular plantar flexors contribute to support, forward progression and swing initiation. We considered a muscle to contribute to forward progression if it accelerated the trunk forward (Kepple et al., 1997), support if it accelerated the trunk vertically (Kepple et al., 1997), and swing initiation if it contributed positive power directly to the leg segments in pre-swing (Hof et al., 1993). By definition, the controlled roll-off theory implies that muscles do not contribute directly to forward progression.

Section snippets

Methods

A forward dynamics simulation of walking driven by individual muscle actuators was developed. This consisted of modeling the musculoskeletal system, muscle force generation and ground contact forces, identifying appropriate initial conditions (positions and orientations of the body segments at heel-strike) and finding the muscle excitations that replicate walking kinematics and kinetics.

Results

A simulation was generated such that the simulated kinematics closely matched the group-averaged kinematics (Fig. 1), and the simulated kinetics (joint torques and powers; ground reaction forces) were near ±2 SD of the experimental data (Fig. 2). Since the muscle excitation timing was constrained in the optimization, the muscle timing compared well with published EMG data (Fig. 3). Therefore, the timing of muscle force development throughout the gait cycle can be expected to represent normal

Discussion

The objective of the present study was to quantify the contributions of the individual uniarticular and biarticular ankle plantar flexors to walking tasks of support, forward progression and swing initiation. Analyses performed on walking simulation data generated from a forward dynamics approach identified how the individual plantar flexors accelerate the trunk and leg and contribute to the power flow throughout the musculoskeletal system. Thus, how each muscle contributes to the three task

Acknowledgements

The authors are grateful to Dr. Tom Andriacchi and Ajit Chaudhari for providing the experimental data. This work was supported by NIH grant NS17662 and the Rehabilitation R&D Service of the Department of Veterans Affairs (VA).

References (41)

  • T.F. Novacheck

    The biomechanics of running

    Gait and Posture

    (1998)
  • S.J. Piazza et al.

    The influence of muscles on knee flexion during the swing phase of gait

    Journal of Biomechanics

    (1996)
  • C.C. Raasch et al.

    Muscle coordination of maximum-speed pedaling

    Journal of Biomechanics

    (1997)
  • V.P. Stokes et al.

    Rotational and translational movement features of the pelvis and thorax during adult human locomotion

    Journal of Biomechanics

    (1989)
  • F.E. Zajac

    Muscle coordination of movementa perspective

    Journal of Biomechanics

    (1993)
  • T.P. Andriacchi et al.

    Musculoskeletal dynamics, locomotion, and clinical applications

  • R.F. Chandler et al.

    Investigation of inertial properties of the human body

    (1975)
  • C.E. Clauser et al.

    Weight, volume and center of mass of segments of the human body

    (1969)
  • S.L. Delp et al.

    An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures

    IEEE Transactions of Biomedical Engineering

    (1990)
  • Gerritsen, K.G.M., 1997. Computer Simulation of FES-Assisted Locomotion, Ph.D. Thesis, Department of Medical Science,...
  • Cited by (839)

    View all citing articles on Scopus
    View full text