Skip to main content
Log in

Evolutionary game dynamics in finite populations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We introduce a model of stochastic evolutionary game dynamics in finite populations which is similar to the familiar replicator dynamics for infinite populations. Our focus is on the conditions for selection favoring the invasion and/or fixation of new phenotypes. For infinite populations, there are three generic selection scenarios describing evolutionary game dynamics among two strategies. For finite populations, there are eight selection scenarios. For a fixed payoff matrix a number of these scenarios can occur for different population sizes. We discuss several examples with unexpected behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Benaim, M., S. Schreiber and P. Tarres (2003). Generalized urn models of evolutionary processes. Ann. Appl. Prob. (in press).

  • Ficici, S. and J. Pollack (2000). Effects of finite populations on evolutionary stable strategies, in Proceedings of the 2000 Genetic and Evolutionary Computation Conference, L. Darrell Whitley (Ed.), Morgan-Kaufmann.

  • Fogel, G., P. Andrews and D. Fogel (1998). On the instability of evolutionary stable strategies in small populations. Ecol. Modeling 109, 283–294; Biosystems 44, 135–152.

    Article  Google Scholar 

  • Fogel, D., G. Fogel and P. Andrews (1997). On the instability of evolutionary stable strategies. Biosystems 44, 135–152.

    Article  Google Scholar 

  • Foster, D. and P. Young (1990). Stochastic evolutionary game dynamics. Theor. Popul. Biol. 38, 219–232; (1997). Theor. Popul. Biol. 51, 77–78 Corrigendum.

    Article  MathSciNet  Google Scholar 

  • Fudenberg, D. and C. Harris (1992). Evolutionary dynamics with aggregate shocks. J. Econom. Theory 57, 420–441.

    Article  MathSciNet  Google Scholar 

  • Fudenberg, D., M. Nowak and C. Taylor (2003). Stochastic evolution in finite populations. Games Econ. Behav. (submitted for publication).

  • Hamilton, W. D. (1971). Selection of selfish and altruistic behavior in some extreme models, in Man and Beast: Comparative Social Behavior, J. F. Eisenberg and W. S. Dillon (Eds), Washington, DC: Smithsonian Institution.

    Google Scholar 

  • Hofbauer, J., P. Schuster and K. Sigmund (1979). A note on evolutionary stable strategies and game dynamics. J. Theor. Biol. 81, 609–612.

    Article  MathSciNet  Google Scholar 

  • Hofbauer, J. and K. Sigmund (1998). Evolutionary Games and Population Dynamics, Cambridge University Press.

  • Hofbauer, J. and K. Sigmund (2003). Evolutionary game dynamics. Bull. Am. Math. Soc. 40, 479–519.

    Article  MathSciNet  Google Scholar 

  • Kandori, M., G. Mailath and R. Rob (1993). Learning, mutation, and long run equilibria in games. Econometrica 61, 29–56.

    MathSciNet  Google Scholar 

  • Karlin, S. and H. Taylor (1975). A First Course in Stochastic Processes, Academic Press.

  • Maruyama, T. and M. Nei (1981). Genetic variability maintained by mutation and overdominant selection in finite populations. Genetics 98, 441–459.

    MathSciNet  Google Scholar 

  • Maynard Smith, J. (1982). Evolution and the Theory of Games, Cambridge University Press.

  • Maynard Smith, J. (1988). Can a mixed strategy be stable in a finite population? J. Theor. Biol. 130, 247–251.

    MathSciNet  Google Scholar 

  • Moran, P. A. P. (1962). The Statistical Processes of Evolutionary Theory, Oxford: Clarendon Press.

    Google Scholar 

  • Nowak, M. A., A. Sasaki, C. Taylor and D. Fudenberg (2003). Emergence of cooperation and evolutionary stability in finite populations. Nature 248, 646–650.

    Google Scholar 

  • Sasaki, A. (1989). Evolution of pathogen strategies. PhD thesis, Kyushu University.

  • Sasaki, A. (1992). The evolution of host and pathogen genes under epidemiological interaction. Population Pareo-Genetics, in Proceeding of the Seventeenth Taniguchi International Symposium on Biophysics, N. Takahata (Ed.), Tokyo: Japan Scientific Society Press, pp. 247–263.

    Google Scholar 

  • Schaffer, M. (1988). Evolutionary stable strategies for a finite population and a variable contest size. J. Theor. Biol. 132, 469–478.

    MathSciNet  Google Scholar 

  • Schreiber, S. (2001). Urn models, replicator processes, and random genetic drift. SIAM J. Appl. Math. 61, 2148–2167.

    Article  MATH  MathSciNet  Google Scholar 

  • Slatkin, M. (2000). Balancing selection at closely linked, overdominant loci in a finite population. Genetics 154, 1367–1378.

    Google Scholar 

  • Takahata, N. and M. Nei (1990). Frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124, 967–978.

    Google Scholar 

  • Taylor, P. D. and L. Jonker (1978). Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156.

    Article  MathSciNet  Google Scholar 

  • Young, P. (1993). The evolution of conventions. Econometrica 61, 57–84.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, C., Fudenberg, D., Sasaki, A. et al. Evolutionary game dynamics in finite populations. Bull. Math. Biol. 66, 1621–1644 (2004). https://doi.org/10.1016/j.bulm.2004.03.004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.03.004

Keywords

Navigation