Skip to main content

Advertisement

Log in

A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Although there is consensus that localized Ca2+ elevations known as Ca2+ puffs and sparks arise from the cooperative activity of intracellular Ca2+ channels, the precise relationship between single-channel kinetics and the collective phenomena of stochastic Ca2+ excitability is not well understood. Here we present a formalism by which mathematical models for Ca2+-regulated Ca2+ release sites are derived from stochastic models of single-channel gating that include Ca2+ activation, Ca2+ inactivation, or both. Such models are stochastic automata networks (SANs) that involve a large number of functional transitions, that is, the transition probabilities of the infinitesimal generator matrix of one of the automata (i.e., an individual channel) may depend on the local [Ca2+] and thus the state of the other channels. Simulation and analysis of the SAN descriptors representing homogeneous clusters of intracellular Ca2+ channels show that (1) release site density can modify both the steady-state open probability and stochastic excitability of Ca2+ release sites, (2) Ca2+ inactivation is not a requirement for Ca2+ puffs or sparks, and (3) a single-channel model with a bell-shaped open probability curve does not lead to release site activity that is a biphasic function of release site density. These findings are obtained using iterative, memory-efficient methods (novel in this biophysical context and distinct from Monte Carlo simulation) that leverage the highly structured SAN descriptor to unambiguously calculate the steady-state probability of each release site configuration and puff statistics such as puff duration and inter-puff interval. The validity of a mean field approximation that neglects the spatial organization of Ca2+ release sites is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbritton, N., Meyer, T., Stryer, L., 1992. Range of messenger action of Ca2+ ion and inositol 1,4,5-trisphosphate. Science 258, 1812–1815.

    Google Scholar 

  • Asmussen, S., Bladt, M., 1997. Renewal theory and queueing algorithms for matrix-exponential distributions. In: Chakravarthy, S., Alfa, A. (Eds.), Matrix-Analytic Methods in Stochastic Models. Marcel Dekker, Inc., New York, pp. 313–341.

    Google Scholar 

  • Atri, A., Amundson, J., Clapham, D., Sneyd, J., 1993. A single-pool model for intracellular Ca2+ oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65, 1727–1739.

    Google Scholar 

  • Berridge, M., 1993. Inositol trisphosphate and Ca2+ signaling. Nature 361, 315–325.

    Article  Google Scholar 

  • Berridge, M., 1997. Elementary and global aspects of Ca2+ signalling. J. Physiol. (London) 499, 291–306.

    Google Scholar 

  • Berridge, M., 1998. Neuronal Ca2+ signaling. Neuron 21, 13–26.

    Article  Google Scholar 

  • Bers, D., 1992. Excitation-Contraction Coupling and Cardiac Contractile Force, 2nd edition. Kluwer Academic Publishers.

  • Bertram, R., Smith, G., Sherman, A., 1999. Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release. Biophys. J. 76, 735–750.

    Google Scholar 

  • Bezprozvanny, I., Ehrlich, B., 1994. Inositol (1,4,5)-trisphosphate (IP3)-gated Ca2+ channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal Ca2+. J. Gen. Physiol. 104, 821–856.

    Article  Google Scholar 

  • Bootman, M., Lipp, P., 1999. Ringing changes to the ‘bell-shaped curve’. Curr. Biol. 9, R876–R878.

    Article  Google Scholar 

  • Bugrim, A., Zhabotinsky, A., Epstein, I., 1997. Ca2+ waves in a model with a random spatially discrete distribution of Ca2+ release sites. Biophys. J. 73, 2897–2906.

    Google Scholar 

  • Cannell, M., Cheng, H., Lederer, W., 1995. The control of calcium release in heart muscle. Science 268, 1045–1049.

    Google Scholar 

  • Cheng, H., Lederer, M., Lederer, W., Cannell, M., 1993a. Ca2+ sparks and [Ca2+]i waves in cardiac myocytes. Am J. Physiol. 270, C148–C159.

    Google Scholar 

  • Cheng, H., Lederer, W., Cannell, M., 1993b. Ca2+ sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744.

    Google Scholar 

  • Chow, C., White, J., 1996. Spontaneous action potentials due to channel fluctuations. Biophys. J. 71, 3013–3021.

    Google Scholar 

  • Clay, J., DeFelice, L., 1983. Relationship between membrane excitability and single channel open-close kinetics. Biophys. J. 42, 151–157.

    Google Scholar 

  • Colquhoun, D., Hawkes, A., 1995. A Q-matrix cookbook: how to write only one program to calculate the single-channel and macroscopic predictions for any kinetic mechanism. In: Sakmann, B., Neher, E. (Eds.), Single-Channel Recording. Plenum Press, New York, pp. 589–633.

    Google Scholar 

  • Dargan, S., Parker, I., 2003. Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals. J. Physiol. 553, 775–788.

    Article  Google Scholar 

  • Durrett, R., 1999. Essentials of Stochastic Processes. Springer, New York.

    MATH  Google Scholar 

  • de Souza e Silva, E., Gail, H., 2000. Transient solutions for Markov chains. In: Grassmann, W. (Ed.), Computational Probability. Kluwer Academic Publishers, Boston, pp. 43–79.

    Google Scholar 

  • De Young, G., Keizer, J., 1992. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl. Acad. Sci. USA 89, 9895–9899.

    Article  Google Scholar 

  • DeFelice, L., 1981. Introduction to Membrane Noise. Plenum Press, New York.

    Google Scholar 

  • Falcke, M., Tsimring, L., Levine, H., 2000. Stochastic spreading of intracellular Ca2+ release. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, 2636–2643.

    Google Scholar 

  • Fernandes, P., Plateau, B., Stewart, W., 1998. Efficient descriptor-vector multiplications in stochastic automata networks. J. ACM 45, 381–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Fox, R., Lu, Y., 1994. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E 49, 3421–3431.

    Article  Google Scholar 

  • Gabso, M., Neher, E., Spira, M., 1997. Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18, 473–481.

    Article  Google Scholar 

  • Gillespie, D., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  Google Scholar 

  • Golub, G., Loan, C.V., 1996. Matrix Computations. Johns Hopkins University Press.

  • Hagar, R., Burgstahler, A., Nathanson, M., Ehrlich, B., 1998. Type III IP3 receptor channel stays open in the presence of increased Ca2+. Nature 396, 81–84.

    Article  Google Scholar 

  • Hill, T., 1977. Free Energy Transduction in Biology: The Steady-State Kinetic and Thermodynamic Formalism. Academic Press, New York.

    Google Scholar 

  • Horn, R., Johnson, C., 1991. Topics in Matrix Analysis. Cambridge University Press.

  • Joseph, S., 1996. The inositol triphosphate receptor family. Cell Signal 8, 1–7.

    Article  Google Scholar 

  • Kaftan, E., Ehrlich, B., Watras, J., 1997. Inositol 1,4,5-trisphosphate (IP3) and Ca2+ interact to increase the dynamic range of IP3 receptor-dependent Ca2+ signaling. J. Gen. Physiol. 110, 529–538.

    Article  Google Scholar 

  • Keizer, J., 1987. Statistical Thermodynamics of Nonequilibrium Processes. Springer, Berlin.

    Google Scholar 

  • Kemeny, J., Snell, J., 1976. Finite Markov Chains. Springer.

  • Langville, A., Stewart, W., 2003. A Kronecker product approximate preconditioner for SANs. Numer. Linear Algebra Appl. 10, 1–29.

    Article  Google Scholar 

  • Langville, A., Stewart, W., 2004. The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167(2), 429–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Latouche, G., Ramaswami, V., 1999. Introduction to Matrix Analytic Methods in Stochastic Modeling. Society for Industrial and Applied Mathematics, Philadelphia, PA.

    MATH  Google Scholar 

  • LeBeau, A., Yule, D., Groblewski, G., Sneyd, J., 1999. Agonist-dependent phosphorylation of the inositol 1,4,5-trisphosphate receptor: a possible mechanism for agonist-specific calcium oscillations in pancreatic acinar cells. J. Gen. Physiol. 113, 851–872.

    Article  Google Scholar 

  • Li, Y., Rinzel, J., 1994. Equations for IP3R-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166, 461–473.

    Article  Google Scholar 

  • Mak, D., Foskett, J., 1997. Single-channel kinetics, inactivation, and spatial distribution of inositol trisphosphate (IP3) receptors in Xenopus oocyte nucleus. J. Gen. Physiol. 109, 571–587.

    Article  Google Scholar 

  • Mak, D., McBride, S., Raghuram, V., Yue, Y., Joseph, S., Foskett, J., 2000. Single-channel properties in endoplasmic reticulum membrane of recombinant type 3 inositol trisphosphate receptor. J. Gen. Physiol. 115, 241–256.

    Article  Google Scholar 

  • Maranto, A., 1994. Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium. J. Biol. Chem. 269, 1222–1230.

    Google Scholar 

  • Marchant, J., Parker, I., 1998. Kinetics of elementary Ca2+ puffs evoked in Xenopus oocytes by different Ins(1,4,5)P3 receptor agonists. Biochem. J. 334, 505–509.

    Google Scholar 

  • Marx, S., Gaburjakova, J., Gaburjakova, M., Henrikson, C., Ondrias, K., Marks, A., 2001. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ. Res. 88, 1151–1158.

    Google Scholar 

  • Mazzanti, M., DeFelice, L., Liu, Y., 1991. Gating of L-type Ca2+ channels in embryonic chick ventricle cells: dependence on voltage, current and channel density. J. Physiol. 443, 307–334.

    Google Scholar 

  • Meyer, C.D., 1989. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev. 31, 240–272.

    Article  MATH  MathSciNet  Google Scholar 

  • Moraru, I., Kaftan, E., Ehrlich, B., Watras, J., 1999. Regulation of type 1 inositol 1,4,5-trisphosphate-gated calcium channels by InsP3 and Ca2+: simulation of single channel kinetics based on ligand binding and electrophysiological analysis. J. Gen. Physiol. 113, 837–849.

    Article  Google Scholar 

  • Naraghi, M., Neher, E., 1997. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a Ca2+ channel. J. Neurosci. 17, 6961.

    Google Scholar 

  • Neher, E., 1986. Concentration profiles of intracellular Ca2+ in the presence of diffusible chelator. Exp. Brain Res. 14, 80–96.

    Google Scholar 

  • Neher, E., 1998. Usefulness and limitations of linear approximations to the understanding of Ca2+ signals. Cell Calcium 24, 345.

    Article  Google Scholar 

  • Nicola, V., 1998. Lumping in Markov reward processes. Technical Report, RC14719, IBM Thomas Watson Research Centre, P.O. Box 704, Yorktown Heights, NY 10598.

  • Niggli, E., 1999. Localized intracellular Ca2+ signaling in muscle: Ca2+ sparks and Ca2+ quarks. Annu. Rev. Physiol. 61, 311–335.

    Article  Google Scholar 

  • Norris, J., 1997. Markov Chains. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Parker, I., Choi, J., Yao, Y., 1996. Elementary events of IP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium 20, 105–121.

    Article  Google Scholar 

  • Plateau, B., Atif, K., 1991. Stochastic automata network for modeling parallel systems. IEEE Trans. Softw. Eng. 17, 1093–1108.

    Article  MathSciNet  Google Scholar 

  • Plateau, B., Stewart, W., 2000. Stochastic automata networks. In: Grassmann, W. (Ed.), Computational Probability. Kluwer Academic Publishers, Boston, pp. 113–151.

    Google Scholar 

  • Ramos-Franco, J., Fill, M., Mignery, G., 1998. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys. J. 75, 834–839.

    Google Scholar 

  • Rengifo, J., Rosales, R., Gonzalez, A., Cheng, H., Stern, M., Rios, E., 2002. Intracellular Ca2+ release as irreversible Markov process. Biophys. J. 83, 2511–2521.

    Google Scholar 

  • Rios, E., Stern, M., 1997. Ca2+ in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena. Annu. Rev. Biophys. Biomol. Struct. 26, 47–82.

    Article  Google Scholar 

  • Sala, F., Hernandez-Cruz, A., 1990. Ca2+ diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys. J. 57, 313–324.

    Google Scholar 

  • Sham, J., Song, L., Chen, Y., Deng, L., Stern, M., Lakatta, E., Cheng, H., 1998. Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. USA 95, 15096–15101.

    Google Scholar 

  • Sherman, A., Keizer, J., Rinzel, J., 1990. Domain model for Ca2+-inactivation of Ca2+ channels at low channel density. Biophys. J. 58, 985–995.

    Google Scholar 

  • Shuai, J., Jung, P., 2002. Stochastic properties of Ca2+ release of inositol 1,4,5-trisphosphate receptor clusters. Biophys. J. 83, 87–97.

    Google Scholar 

  • Shuai, J., Jung, P., 2003a. Optimal ion channel clustering for intracellular calcium signaling. Proc. Natl. Acad. Sci. USA 100, 506–510.

    Article  Google Scholar 

  • Shuai, J., Jung, P., 2003b. Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 67, 031905.

  • Smith, G., 1996. Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys. J. 71, 3064–3072.

    Google Scholar 

  • Smith, G., 2002a. An extended DeYoung-Keizer-like IP3 receptor model that accounts for domain Ca2+-mediated inactivation. In: Condat, C., Baruzzi, A. (Eds.), Recent Research Developments in Biophysical Chemistry II. Research Signpost, pp. 37–55.

  • Smith, G., 2002b. Modeling the stochastic gating of ion channels. In: Fall, C., Marland, E., Wagner, J., Tyson, J. (Eds.), Computational Cell Biology. Springer, pp. 291–325.

  • Smith, G., Dai, L., Muira, R., Sherman, A., 2001. Asymptotic analysis of equations for the buffered diffusion of intracellular Ca2+. SIAM J. Appl. Math. 61, 1816–1838.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, G., Keizer, J., 1998. Spark-to-wave transition: saltatory transmission of Ca2+ waves in cardiac myocytes. Biophys. Chem. 72, 87–100.

    Article  Google Scholar 

  • Sobie, E., Dilly, K., dos Santos Cruz, J., Lederer, W., Jafri, M., 2002. Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys. J. 83, 59–78.

    Google Scholar 

  • Steeb, W.-H., 1997. Matrix Calculus and Kronecker Product with Applications and C++ Programs. World Scientific.

  • Stern, M., Song, L., Cheng, H., Sham, J., Yang, H., Boheler, K., Rios, E., 1999. Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors. J. Gen. Physiol. 113, 469–489.

    Article  Google Scholar 

  • Stewart, W., 1994. Introduction to the Numerical Solution of Markov Chains. Princeton University Press.

  • Sun, X., Callamaras, N., Marchant, J., Parker, I., 1998. A continuum of IP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J. Physiol. 509, 67–80.

    Article  Google Scholar 

  • Swillens, S., Champeil, P., Combettes, L., Dupont, G., 1998. Stochastic simulation of a single inositol 1,4,5-trisphosphate-sensitive Ca2+ channel reveals repetitive openings during ‘blip-like’ Ca2+ transients. Cell Calcium 23, 291–302.

    Article  Google Scholar 

  • Swillens, S., Dupont, G., Combettes, L., Champeil, P., 1999. From Ca2+ blips to Ca2+ puffs: theoretical analysis of the requirements for interchannel communication. Proc. Natl. Acad. Sci. USA 96, 13750–13755.

    Google Scholar 

  • Tang, Y., Othmer, H., 1994. A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys. J. 67, 2223–2235.

    Google Scholar 

  • Tang, Y., Stephenson, J., Othmer, H., 1995. Simplification and analysis of models of Ca2+ dynamics based on IP3-sensitive Ca2+ channel kinetics. Biophys. J. 70, 246–263.

    Google Scholar 

  • Wagner, J., Keizer, J., 1994. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456.

    Article  Google Scholar 

  • Wang, S., Song, L., Xu, L., Meissner, G., Lakatta, E., Rios, E., Stern, M., Cheng, H., 2002. Thermodynamically irreversible gating of ryanodine receptors in situ revealed by stereotyped duration of release in Ca2+ sparks. Biophys. J. 83, 242–251.

    Google Scholar 

  • White, J., Rubinstein, J., Kay, A., 2000. Channel noise in neurons. Trends Neurosci. 23, 131–137.

    Article  Google Scholar 

  • Yao, Y., Choi, J., Parker, I., 1995. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J. Physiol. 482, 533–553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, V., Mathias, R. & Smith, G.D. A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels. Bull. Math. Biol. 67, 393–432 (2005). https://doi.org/10.1016/j.bulm.2004.08.010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.08.010

Keywords

Navigation