Cell Reports
Volume 29, Issue 7, 12 November 2019, Pages 1739-1746.e5
Journal home page for Cell Reports

Report
Anti-CRISPR AcrIIA5 Potently Inhibits All Cas9 Homologs Used for Genome Editing

https://doi.org/10.1016/j.celrep.2019.10.017Get rights and content
Under a Creative Commons license
open access

Highlights

  • Anti-CRISPR AcrIIA5 potently inhibits all Cas9 homologs used in genome editing

  • AcrIIA5 functions well in a variety of mammalian cell genome-editing applications

  • The AcrIIA5 functional mechanism leads to sgRNA cleavage

Summary

CRISPR-Cas9 systems provide powerful tools for genome editing. However, optimal employment of this technology will require control of Cas9 activity so that the timing, tissue specificity, and accuracy of editing may be precisely modulated. Anti-CRISPR proteins, which are small, naturally occurring inhibitors of CRISPR-Cas systems, are well suited for this purpose. A number of anti-CRISPR proteins have been shown to potently inhibit subgroups of CRISPR-Cas9 systems, but their maximal inhibitory activity is generally restricted to specific Cas9 homologs. Since Cas9 homologs vary in important properties, differing Cas9s may be optimal for particular genome-editing applications. To facilitate the practical exploitation of multiple Cas9 homologs, here we identify one anti-CRISPR, called AcrIIA5, that potently inhibits nine diverse type II-A and type II-C Cas9 homologs, including those currently used for genome editing. We show that the activity of AcrIIA5 results in partial in vivo cleavage of a single-guide RNA (sgRNA), suggesting that its mechanism involves RNA interaction.

Keywords

Cas9
anti-CRISPR
genome editing
bacteriophage

Cited by (0)

7

Present address: Inscripta, Inc., Pleasanton, CA 94566, USA

8

Lead Contact