Molecular Cell
Volume 36, Issue 5, 11 December 2009, Pages 861-871
Journal home page for Molecular Cell

Article
Optimizing Protein Stability In Vivo

https://doi.org/10.1016/j.molcel.2009.11.022Get rights and content
Under an Elsevier user license
open archive

Summary

Identifying mutations that stabilize proteins is challenging because most substitutions are destabilizing. In addition to being of immense practical utility, the ability to evolve protein stability in vivo may indicate how evolution has formed today's protein sequences. Here we describe a genetic selection that directly links the in vivo stability of proteins to antibiotic resistance. It allows the identification of stabilizing mutations within proteins. The large majority of mutants selected for improved antibiotic resistance are stabilized both thermodynamically and kinetically, indicating that similar principles govern stability in vivo and in vitro. The approach requires no prior structural or functional knowledge and allows selection for stability without a need to maintain function. Mutations that enhance thermodynamic stability of the protein Im7 map overwhelmingly to surface residues involved in binding to colicin E7, showing how the evolutionary pressures that drive Im7-E7 complex formation have compromised the stability of the isolated Im7 protein.

PROTEINS
SYSBIO
HUMDISEASE

Cited by (0)

7

These authors contributed equally to this work