Molecular Cell
Volume 48, Issue 3, 9 November 2012, Pages 365-374
Journal home page for Molecular Cell

Article
RNA Polymerase II Collision Interrupts Convergent Transcription

https://doi.org/10.1016/j.molcel.2012.08.027Get rights and content
Under a Creative Commons license
open access

Summary

Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical and genetic approaches in yeast to show that polymerases transcribing opposite DNA strands cannot bypass each other. RNAPII stops but does not dissociate upon head-to-head collision in vitro, suggesting that opposing polymerases represent insurmountable obstacles for each other. Head-to-head collision in vivo also results in RNAPII stopping, and removal of collided RNAPII from the DNA template can be achieved via ubiquitylation-directed proteolysis. Indeed, in cells lacking efficient RNAPII polyubiquitylation, the half-life of collided polymerases increases, so that they can be detected between convergent genes. These results provide insight into fundamental mechanisms of gene traffic control and point to an unexplored effect of antisense transcription on gene regulation via polymerase collision.

Highlights

► Convergently transcribing RNAPIIs cannot transcribe past one another in vivo ► In vitro, RNAPII stops when the front edges of the colliding proteins touch ► Collided polymerases remain stably associated with the template ► Collided RNAPII accumulates between convergent genes in elc1Δ strains

Cited by (0)