Cell Stem Cell
Volume 14, Issue 5, 1 May 2014, Pages 673-688
Journal home page for Cell Stem Cell

Resource
Epigenomic Profiling of Young and Aged HSCs Reveals Concerted Changes during Aging that Reinforce Self-Renewal

https://doi.org/10.1016/j.stem.2014.03.002Get rights and content
Under an Elsevier user license
open archive

Highlights

  • Epigenome and transcriptome mapping of young and aged hematopoietic stem cells

  • TGF-β signaling, ribosome biogenesis, and H3K4me3 marking are perturbed

  • Epigenetic dysregulation reinforces self-renewal and antagonizes differentiation

  • HSC aging parallels organismal aging and predisposition to malignancy

Summary

To investigate the cell-intrinsic aging mechanisms that erode the function of somatic stem cells during aging, we have conducted a comprehensive integrated genomic analysis of young and aged cells. We profiled the transcriptome, DNA methylome, and histone modifications of young and old murine hematopoietic stem cells (HSCs). Transcriptome analysis indicated reduced TGF-β signaling and perturbation of genes involved in HSC proliferation and differentiation. Aged HSCs exhibited broader H3K4me3 peaks across HSC identity and self-renewal genes and showed increased DNA methylation at transcription factor binding sites associated with differentiation-promoting genes combined with a reduction at genes associated with HSC maintenance. Altogether, these changes reinforce HSC self-renewal and diminish differentiation, paralleling phenotypic HSC aging behavior. Ribosomal biogenesis emerged as a particular target of aging with increased transcription of ribosomal protein and RNA genes and hypomethylation of rRNA genes. This data set will serve as a reference for future epigenomic analysis of stem cell aging.

Cited by (0)

9

Co-first author

10

Co-senior author

11

Present address: CeMM Research Center for Molecular Medicine, Lazarettgasse 14, AKH BT 25.3 Vienna, Austria