Stem Cell Reports
Volume 10, Issue 5, 8 May 2018, Pages 1481-1491
Journal home page for Stem Cell Reports

Article
hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model

https://doi.org/10.1016/j.stemcr.2018.03.007Get rights and content
Under a Creative Commons license
open access

Highlights

  • 3D-generated striatal cells rapidly achieve functional maturity

  • Transplanted cells delayed disease onset and alleviated symptoms in HD mice

  • Transplanted striatal cells increased lifespan in HD mice

  • HTT aggregates were observed in striatal cells transplanted into HD mice

Summary

Huntington disease (HD) is an inherited, progressive neurological disorder characterized by degenerating striatal medium spiny neurons (MSNs). One promising approach for treating HD is cell replacement therapy, where lost cells are replaced by MSN progenitors derived from human pluripotent stem cells (hPSCs). While there has been remarkable progress in generating hPSC-derived MSNs, current production methods rely on two-dimensional culture systems that can include poorly defined components, limit scalability, and yield differing preclinical results. To facilitate clinical translation, here, we generated striatal progenitors from hPSCs within a fully defined and scalable PNIPAAm-PEG three-dimensional (3D) hydrogel. Transplantation of 3D-derived striatal progenitors into a transgenic mouse model of HD slowed disease progression, improved motor coordination, and increased survival. In addition, the transplanted cells developed an MSN-like phenotype and formed synaptic connections with host cells. Our results illustrate the potential of scalable 3D biomaterials for generating striatal progenitors for HD cell therapy.

Keywords

Huntington disease
medium spiny neurons
biomaterials
differentiation
human pluripotent stem cells
cell replacement therapy

Cited by (0)