Skip to main content
Log in

Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Morpho butterfly, famous for its iridescence wing scales, has gradually evolved a diversity of functions and has attracted much attention recently. On the other hand, it is known that the wing surface of Morpho butterfly has some complex and sophisticated structures. In fact, they are composed of an alternating multilayer film system of chitin and air layers, which have different refractive indexes. More importantly, these structures can interact strongly with visible light because the feature size of the structures is in the same order of magnitude with light wavelength. It is noteworthy that it is these optical architectures that cause the excellent multifunction including structural color, antireflection, thermal response, selective vapour response, directional adhesion, superhydrophobicity and so on. This review mainly covers the excellent multifunctional features of Morpho butterfly wings with representative functional structures of multilayer film system, photonic crystal and ridges. Then, the mechanism of the structure-based optical multifunction of Morpho butterfly is analyzed. In order to facilitate mechanism analysis, the models of bionic functional structures are reported, as well as the interaction process between the multiscale structures and the external media It is concluded that these functions of Morpho butterfly wings have inevitable and corresponding regularity connection with the structural parameters and the dielectric coefficient of the filled medium. At last, the future direction and prospects of this field are briefly addressed. It is hoped that this review could be beneficial to provide some innovative inspirations and new ideas to the researchers in the fields of engineering, biomedicine, and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kasemo B. Biological surface science. Surface Science, 2002, 500, 656–677.

    Article  Google Scholar 

  2. Hook F, Kasemo B, Grunze M, Zauscher S. Quantitative biological surface science: Challenges and recent advances. ACS Nano, 2008, 2, 2428–2436.

    Article  Google Scholar 

  3. Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature, 2010, 463, 640–643.

    Article  Google Scholar 

  4. Song C, Zheng Y M. Wetting-controlled strategies: From theories to bio-inspiration. Journal of Colloid and Interface Science, 2014, 427, 2–14.

    Article  Google Scholar 

  5. Ju J, Bai H, Zheng Y M, Zhao T Y, Fang R C, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications, 2012, 3, 1247.

    Article  Google Scholar 

  6. Cao M Y, Ju J, Li K, Dou S X, Liu K S, Jiang L. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Advanced Functional Materials, 2014, 24, 3235–3240.

    Article  Google Scholar 

  7. Gao X F, Yan X, Yao X, Xu L, Zhang K, Zhang J H, Yang B, Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials, 2007, 19, 2213–2217.

    Article  Google Scholar 

  8. Pang C, Kim T I, Bae W G, Kang D, Kim S M, Suh K Y. Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers. Advanced Materials, 2012, 24, 475–479.

    Article  Google Scholar 

  9. Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414, 33–34.

    Article  Google Scholar 

  10. Malik F T, Clement R M, Gethin D T, Krawszik W, Parker A R. Nature’s moisture harvesters: A comparative review. Bioinspiration & Biomimetics, 2014, 9, 031002.

  11. Ball P. Engineering-shark skin and other solutions. Nature, 1999, 400, 507–509.

    Article  Google Scholar 

  12. Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in Fluids, 2000, 28, 403–412.

    Article  Google Scholar 

  13. Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2010, 368, 4775–4806.

    Article  Google Scholar 

  14. Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405, 681–685.

    Article  Google Scholar 

  15. Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2003, 2, 461–463.

    Article  Google Scholar 

  16. Hu C C, Greaney P A. Role of seta angle and flexibility in the gecko adhesion mechanism. Journal of Applied Physics, 2014, 116, 074302.

  17. Vukusic P, Sambles J R, Lawrence C R. Structural colour-colour mixing in wing scales of a butterfly. Nature, 2000, 404, 457-457.

    Article  Google Scholar 

  18. Sun G, Fang Y, Cong Q, Ren L Q. Anisotropism of the non-smooth surface of butterfly wing. Journal of Bionic Engineering, 2009, 6, 71–76.

    Article  Google Scholar 

  19. Vukusic P, Sambles J R. Photonic structures in biology. Nature, 2003, 424, 852–855.

    Article  Google Scholar 

  20. Blossey R. Self-cleaning surfaces-virtual realities. Nature Materials, 2003, 2, 301–306.

    Article  Google Scholar 

  21. Han Z W, Zhang J Q, Ge C, Li W, Ren L Q. Erosion resistance of bionic functional surfaces inspired from desert scorpions. Langmuir, 2012, 28, 2914–2921.

    Article  Google Scholar 

  22. Malshe A, Rajurkar K, Samant A, Hansen H N, Bapat S, Jiang W P. Bio-inspired functional surfaces for advanced applications. Cirp Annals-Manufacturing Technology, 2013, 62, 607–628.

    Article  Google Scholar 

  23. Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability. Chemical Society Reviews, 2010, 39, 3240–3255.

    Article  Google Scholar 

  24. Yao H B, Fang H Y, Wang X H, Yu S H. Hierarchical assembly of micro-/nano-building blocks: Bio-inspired rigid structural functional materials. Chemical Society Reviews, 2011, 40, 3764–3785.

    Article  Google Scholar 

  25. Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4, 277–288.

    Article  Google Scholar 

  26. Fratzl P. Biomimetic materials research: What can we really learn from nature’s structural materials? Journal of the Royal Society Interface, 2007, 4, 637–642.

    Article  Google Scholar 

  27. Ball P. Life’s lessons in design. Nature, 2001, 409, 413–416.

    Article  Google Scholar 

  28. Douglas T. A bright bio-inspired future. Science, 2003, 299, 1192–1193.

    Article  Google Scholar 

  29. Sarikaya M, Tamerler C, Jen A K Y, Schulten K, Baneyx F. Molecular biomimetics: Nanotechnology through biology. Nature Materials, 2003, 2, 577–585.

    Article  Google Scholar 

  30. Mayer G. Rigid biological systems as models for synthetic composites. Science, 2005, 310, 1144–1147.

    Article  Google Scholar 

  31. Lee L P, Szema R. Inspirations from biological, optics for advanced phtonic systems. Science, 2005, 310, 1148–1150.

    Article  Google Scholar 

  32. Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Advanced Materials, 2008, 20, 2842–2858.

    Article  Google Scholar 

  33. Huebsch N, Mooney D J. Inspiration and application in the evolution of biomaterials. Nature, 2009, 462, 426–432.

    Article  Google Scholar 

  34. Kolle M, Salgard-Cunha P M, Scherer M R J, Huang F M, Vukusic P, Mahajan S, Baumberg J J, Steiner U. Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat Nanotechnol, 2010, 5, 511–515.

    Article  Google Scholar 

  35. Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Reports on Progress in Physics, 2008, 71, 076401.

  36. Wickham S, Large M C J, Poladian L, Jermiin L S. Exaggeration and suppression of iridescence: The evolution of two-dimensional butterfly structural colours. Journal of the Royal Society Interface, 2006, 3, 99–108.

    Article  Google Scholar 

  37. Imafuku M, Kubota H Y, Inouye K. Wing colors based on arrangement of the multilayer structure of wing scales in Lycaenid butterflies (insecta: Lepidoptera). Entomological Science, 2012, 15, 400–407.

    Article  Google Scholar 

  38. Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Bio-inspired variable structural color materials. Chemical Society Reviews, 2012, 41, 3297–3317.

    Article  Google Scholar 

  39. Ingram A L, Parker A R. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2465–2480.

    Article  Google Scholar 

  40. Vukusic P, Stavenga D G. Physical methods for investigating structural colours in biological systems. Journal of the Royal Society Interface, 2009, 6, S133–S148.

    Article  Google Scholar 

  41. Han Z W, Niu S C, Shang C H, Liu Z N, Ren L Q. Light trapping structures in wing scales of butterfly Trogonoptera brookiana. Nanoscale, 2012, 4, 2879–2883.

    Article  Google Scholar 

  42. Han Z W, Niu S C, Yang M, Zhang J Q, Yin W, Ren L Q. An ingenious replica templated from the light trapping structure in butterfly wing scales. Nanoscale, 2013, 5, 8500–8506.

    Article  Google Scholar 

  43. Han Z W, Niu S C, Li W, Ren L Q. Preparation of bionic nanostructures from butterfly wings and their low reflectivity of ultraviolet. Applied Physics Letters, 2013, 102, 233702.

  44. Han Z W, Niu S C, Zhang L F, Liu Z N, Ren L Q. Light trapping effect in wing scales of butterfly Papilio peranthus and its simulations. Journal of Bionic Engineering, 2013, 10, 162–169.

    Article  Google Scholar 

  45. Mei H, Luo D, Guo P, Song C, Liu C C, Zheng Y M, Jiang L. Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency. Soft Matter, 2011, 7, 10569–10573.

    Article  Google Scholar 

  46. Pris A D, Utturkar Y, Surman C, Morris W G, Vert A, Zalyubovskiy S, Deng T, Ghiradella H T, Potyrailo R A. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nature Photonics, 2012, 6, 195–200.

    Article  Google Scholar 

  47. Potyrailo R A, Ghiradella H, Vertiatchikh A, Dovidenko K, Cournoyer J R, Olson E. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics, 2007, 1, 123–128.

    Article  Google Scholar 

  48. Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3, 178–182.

    Article  Google Scholar 

  49. Koon D W, Crawford A B. Insect thin films as sun blocks, not solar collectors. Applied Optics, 2000, 39, 2496–2498.

    Article  Google Scholar 

  50. Huang J Y, Wang X D, Wang Z L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Letters, 2006, 6, 2325–2331.

    Article  Google Scholar 

  51. Kustandi T S, Low H Y, Teng J H, Rodriguez I, Yin R. Mimicking domino-like photonic nanostructures on butterfly wings. Small, 2009, 5, 574–578.

    Article  Google Scholar 

  52. Zhang W, Zhang D, Fan T X, Gu J J, Ding R, Wang H, Guo Q X, Ogawa H. Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials, 2009, 21, 33–40.

    Article  Google Scholar 

  53. Parker A R, Townley H E. Biomimetics of photonic nanostructures. Nature Nanotechnology, 2007, 2, 347–353.

    Article  Google Scholar 

  54. Biro L P, Vigneron J P. Photonic nanoarchitectures in butterflies and beetles: Valuable sources for bioinspiration. Laser & Photonics Reviews, 2011, 5, 27–51.

    Article  Google Scholar 

  55. Saito A, Shibuya T, Yonezawa M, Akai-Kasaya M, Kuwahara Y. Simulation analysis on the optical role of the number of randomly arranged nano-trees on the Morpho butterfly’s scale. Bioinspiration, Biomimetics, and Bioreplication, 2013, 8686, 86860J.

  56. Potyrailo R A, Starkey T A, Vukusic P, Ghiradella H, Vasudev M, Bunning T, Naik R R, Tang Z X, Larsen M, Deng T, Zhong S, Palacios M, Grande J C, Zorn G, Goddard G, Zalubovsky S. Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15567–15572.

    Article  Google Scholar 

  57. Mejdoubi A, Andraud C, Berthier S, Lafait J, Boulenguez J, Richalot E. Finite element modeling of the radiative properties of Morpho butterfly wing scales. Physical Review E, 2013, 87, 022705.

  58. Steindorfer M A, Schmidt V, Belegratis M, Stadlober B, Krenn J R. Detailed simulation of structural color generation inspired by the Morpho butterfly. Optics Express, 2012, 20, 21485–21494.

    Article  Google Scholar 

  59. Peng W H, Zhu S M, Wang W L, Zhang W, Gu J J, Hu X B, Zhang D, Chen Z X. 3D network magnetophotonic crystals fabricated on Morpho butterfly wing templates. Advanced Functional Materials, 2012, 22, 2072–2080.

    Article  Google Scholar 

  60. Chung K, Yu S, Heo C J, Shim J W, Yang S M, Han M G, Lee H S, Jin Y, Lee S Y, Park N, Shin J H. Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings. Advanced Materials, 2012, 24, 2375–2379.

    Article  Google Scholar 

  61. Sharma V, Crne M, Park J O, Srinivasarao M. Structural origin of circularly polarized iridescence in jeweled beetles. Science, 2009, 325, 449–451.

    Article  Google Scholar 

  62. Vukusic P. Evolutionary photonics with a twist. Science, 2009, 325, 398–399.

    Article  Google Scholar 

  63. Gaillot D P, Deparis O, Welch V, Wagner B K, Vigneron J P, Summers C J. Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition. Physical Review E, 2008, 78, 031922.

  64. Yoshioka S, Kinoshita S. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly. Proceedings of the Royal Society B-Biological Sciences, 2006, 273, 129–134.

    Article  Google Scholar 

  65. Yoshioka S, Kinoshita S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 581–587.

    Article  Google Scholar 

  66. Biro L P, Balint Z, Kertesz K, Vertesy Z, Mark G I, Horvath Z E, Balazs J, Mehn D, Kiricsi I, Lousse V, Vigneron J P. Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair. Physical Review E, 2003, 67, 021907.

  67. Vukusic P, Sambles J R, Lawrence C R, Wootton R J. Quantified interference and diffraction in single Morpho butterfly scales. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1403–1411.

    Article  Google Scholar 

  68. Gralak B, Tayeb G, Enoch S. Morpho butterflies wings color modeled with lamellar grating theory. Optics Express, 2001, 9, 567–578.

    Article  Google Scholar 

  69. Plattner L. Optical properties of the scales of Morpho rhetenor butterflies: Theoretical and experimental investigation of the back-scattering of light in the visible spectrum. Journal of the Royal Society Interface, 2004, 1, 49–59.

    Article  Google Scholar 

  70. Banerjee S, Cole J B, Yatagai T. Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method. Micron, 2007, 38, 97–103.

    Article  Google Scholar 

  71. Parker A R. 515 million years of structural colour. Journal of Optics A: Pure and Applied Optics, 2000, 2, R15–R28.

    Article  Google Scholar 

  72. Watanabe K, Hoshino T, Kanda K, Haruyama Y, Matsui S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Japanese Journal of Applied Physics Part 2: Letters & Express Letters, 2005, 44, L48–L50.

    Article  Google Scholar 

  73. Kertesz K, Molnar G, Vertesy Z, Koos A A, Horvath Z E, Mark G I, Tapaszto L, Balint Z, Tamaska I, Deparis O, Vigneron J P, Biro L P. Photonic band gap materials in butterfly scales: A possible source of “blueprints”. Materials Science and Engineering B: Advanced Functional Solid-State Materials, 2008, 149, 259–265.

    Article  Google Scholar 

  74. Jorgensen M R, Bartl M H. Biotemplating routes to three-dimensional photonic crystals. Journal of Materials Chemistry, 2011, 21, 10583–10591.

    Article  Google Scholar 

  75. Chung K, Shin J H. Range and stability of structural colors generated by Morpho-inspired color reflectors. Journal of the Optical Society of America A: Optics Image Science and Vision, 2013, 30, 962–968.

    Article  Google Scholar 

  76. Kinoshita S, Yoshioka S, Kawagoe K. Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1417–1421.

    Article  Google Scholar 

  77. Parker A R, Welch V L, Driver D, Martini N. Structural colour-opal analogue discovered in a weevil. Nature, 2003, 426, 786–787.

    Article  Google Scholar 

  78. Vukusic P. Natural photonics. Physics World, 2004, 17, 35–39.

    Article  Google Scholar 

  79. Kinoshita S, Yoshioka S. Structural colors in nature: The role of regularity and irregularity in the structure. ChemPhysChem, 2005, 6, 1442–1459.

    Article  Google Scholar 

  80. Xu J, Guo Z G. Biomimetic photonic materials with tunable structural colors. Journal of Colloid and Interface Science, 2013, 406, 1–17.

    Article  Google Scholar 

  81. Parker A R, Townley H E. Biomimetics of photonic nanostructures. Nature Nanotechnology, 2007, 2, 347–353.

    Article  Google Scholar 

  82. Liu F, Dong B Q, Liu X H, Zheng Y M, Zi J. Structural color change in longhorn beetles Tmesisternus isabellae. Optics Express, 2009, 17, 16183–16191.

    Article  Google Scholar 

  83. Vigneron J P, Pasteels J M, Windsor D M, Vertesy Z, Rassart M, Seldrum T, Dumont J, Deparis O, Lousse V, Biro L P, Ertz D, Welch V. Switchable reflector in the panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae). Physical Review E, 2007, 76, 031907.

  84. Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R. Coloration strategies in peacock feathers. Proceedings of the National Academy Science of the United States of America, 2003, 100, 12576–12578.

    Article  Google Scholar 

  85. Li Y Z, Lu Z H, Yin H W, Yu X D, Liu X H, Zi J. Structural origin of the brown color of barbules in male peacock tail feathers. Physical Review E, 2005, 72, 010902.

  86. Yoshioka S, Nakamura E, Kinoshita S. Origin of two-color iridescence in rock dove’s feather. Journal of the Physical Society of Japan, 2007, 76, 013801.

  87. Kinoshita S, Yoshioka S. Structural colors in insects, particularly in Morpho butterflies. Sen-I Gakkaishi, 2003, 59, 35–39.

    Article  Google Scholar 

  88. Li H, He X. Bandstop mechanism of light scattering from Morpho butterfly’s wing. Journal of Electromagnetic Waves and Applications, 2008, 22, 1829–1838.

    Article  Google Scholar 

  89. Siddique R H, Diewald S, Leuthold J, Holscher H. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies. Optics Express, 2013, 21, 14351–14361.

    Article  Google Scholar 

  90. Sato O, Kubo S, Gu Z Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Accounts of Chemical Research, 2009, 42, 1–10.

    Article  Google Scholar 

  91. Prum R O, Quinn T, Torres R H. Anatomically diverse butterfly scales all produce structural colours by coherent scattering. Journal of Experimental Biology, 2006, 209, 748–765.

    Article  Google Scholar 

  92. Wong T H, Gupta M C, Robins B, Levendusky T L. Color generation in butterfly wings and fabrication of such structures. Optics Letters, 2003, 28, 2342–2344.

    Article  Google Scholar 

  93. Berthier S, Charron E, Da Silva A. Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus. Optics Communications, 2003, 228, 349–356.

    Article  Google Scholar 

  94. Kambe M, Zhu D, Kinoshita S. Origin of retroreflection from a wing of the Morpho butterfly. Journal of the Physical Society of Japan, 2011, 80, 054801.

  95. Ding Y, Xu S, Wang Z L. Structural colors from Morpho peleides butterfly wing scales. Journal of Applied Physics, 2009, 106, 074702.

  96. Smith G S. Structural color of Morpho butterflies. American Journal of Physics, 2009, 77, 1010–1019.

    Article  Google Scholar 

  97. Jiang X, Shi T L, Zuo H B, Yang X F, Wu W J, Liao G L. Investigation on color variation of Morpho butterfly wings hierarchical structure based on PCA. Science China-Technological Sciences, 2012, 55, 16–21.

    Article  Google Scholar 

  98. Boulenguez J, Berthier S, Leroy F. Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly. Applied Physics A: Materials Science & Processing, 2012, 106, 1005–1011.

    Article  Google Scholar 

  99. Wu W J, Shi T L, Liao G L, Zuo H B. Research on spectral reflection characteristics of nanostructures in Morpho butterfly wing scale. 3rd International Photonics and Optoelectronics Meetings (POEM 2010), 2011, 276, 012049.

  100. Van Hooijdonk E, Barthou C, Vigneron J P, Berthier S. Structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae). Nanophotonic Materials Viii, 2011, 8094, 80940E.

  101. Van Hooijdonk E, Barthou C, Vigneron J P, Berthier S. Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae). Journal of Nanophotonics, 2011, 5, 053525.

  102. Liao G L, Zuo H B, Cao Y B, Shi T L. Optical properties of the micro/nano structures of Morpho butterfly wing scales. Science China-Technological Sciences, 2010, 53, 175–181.

    Article  Google Scholar 

  103. Nijhout H F. The color patterns of butterflies and moths. Scientific American, 1981, 245, 140–151.

    Article  Google Scholar 

  104. Srinivasarao M. Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chemical Reviews, 1999, 99, 1935–1961.

    Article  Google Scholar 

  105. Tada H, Mann S E, Miaoulis I N, Wong P Y. Effects of a butterfly scale microstructure on the iridescent color observed at different angles. Optics Express, 1999, 5, 87–92.

    Article  Google Scholar 

  106. Yu K L, Fan T X, Lou S, Zhang D. Biomimetic optical materials: Integration of nature’s design for manipulation of light. Progress in Materials Science, 2013, 58, 825–873.

    Article  Google Scholar 

  107. Saranathan V, Osuji C O, Mochrie S G J, Noh H, Narayanan S, Sandy A, Dufresne E R, Prum R O. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11676–11681.

    Article  Google Scholar 

  108. Saito A, Yonezawa M, Murase J, Juodkazis S, Mizeikis V, Akai-Kasaya M, Kuwahara Y. Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale. Journal of Nanoscience and Nanotechnology, 2011, 11, 2785–2792.

    Article  Google Scholar 

  109. Miyako E, Sugino T, Okazaki T, Bianco A, Yudasaka M, Iijima S. Self-assembled carbon nanotube honeycomb networks using a butterfly wing template as a multifunctional nanobiohybrid. ACS Nano, 2013, 7, 8736–8742.

    Article  Google Scholar 

  110. Zhang F Y, Shen Q C, Shi X D, Li S P, Wang W L, Luo Z, He G F, Zhang P, Tao P, Song C Y, Zhang W, Zhang D, Deng T, Shang W. Infrared detection based on localized modification of Morpho butterfly wings. Advanced materials, 2015, 27, 1077–1082.

    Article  Google Scholar 

  111. Jaksic Z, Pantelic D, Sarajlic M, Savic-Sevic S, Matovic J, Jelenkovic B, Vasiljevic-Radovic D, Curcic S, Vukovic S, Pavlovic V, Buha J, Lackovic V, Labudovic-Borovic M, Curcic B. Butterfly scales as bionic templates for complex ordered nanophotonic materials: A pathway to biomimetic plasmonics. Optical Materials, 2013, 35, 1869–1875.

    Article  Google Scholar 

  112. Oh J W, Chung W J, Heo K, Jin H E, Lee B Y, Wang E, Zueger C, Wong W, Meyer J, Kim C, Lee S Y, Kim W G, Zemla M, Auer M, Hexemer A, Lee S W. Biomimetic virus-based colourimetric sensors. Nature Communications, 2014, 5, 3043.

    Google Scholar 

  113. Wu W J, Liao G, Shi T L, Malik R, Zeng C. The relationship of selective surrounding response and the nanophotonic structures of Morpho butterfly scales. Microelectronic Engineering, 2012, 95, 42–48.

    Article  Google Scholar 

  114. Jiang T, Peng Z C, Wu W J, Shi T L, Liao G L. Gas sensing using hierarchical micro/nanostructures of Morpho butterfly scales. Sensors and Actuators A: Physical, 2014, 213, 63–69.

    Article  Google Scholar 

  115. Kinoshita S, Yoshioka S, Fujii Y, Okamoto N. Photophysics of structural color in the Morpho butterflies. Forma, 2002, 17, 103–121.

    Google Scholar 

  116. Kumazawa K, Tabata H. A three-dimensional fluorescence analysis of the wings of male Morpho sulkowskyi and Papilio xuthus butterflies. Zoological Science, 2001, 18, 1073–1079.

    Article  Google Scholar 

  117. Kertesz K, Piszter G, Jakab E, Balint Z, Vertesy Z, Biro L P. Color change of blue butterfly wing scales in an air-vapor ambient. Applied Surface Science, 2013, 281, 49–53.

    Article  Google Scholar 

  118. Fang Y, Sun G, Cong Q, Chen G H, Ren L Q. Effects of methanol on wettability of the non-smooth surface on butterfly wing. Journal of Bionic Engineering, 2008, 5, 127–133.

    Article  Google Scholar 

  119. Liu M J, Zheng Y M, Zhai J, Jiang L. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Accounts of Chemical Research, 2010, 43, 368–377.

    Article  Google Scholar 

  120. Liu F, Liu Y P, Huang L, Hu X H, Dong B Q, Shi W Z, Xie Y Q, Ye X A. Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus. Optics Communications, 2011, 284, 2376–2381.

    Article  Google Scholar 

  121. Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A. Advances in engineered surfaces for functional performancex. Cirp Annals-Manufacturing Technology, 2008, 57, 750–769.

    Article  Google Scholar 

  122. Wang W L, Zhang W, Gu J J, Liu Q L, Deng T, Zhang D, Lin H Q. Design of a structure with low incident and viewing angle dependence inspired by Morpho butterflies. Scientific Reports, 2013, 3, 3427.

    Article  Google Scholar 

  123. Zhang D, Zhang W, Gu J J, Fan T X, Liu Q L, Su H L, Zhu S M. Inspiration from butterfly and moth wing scales: Characterization, modeling, and fabrication. Progress in Materials Science, 2015, 68, 67–96.

    Article  Google Scholar 

  124. Lee R T, Smith G S. Detailed electromagnetic simulation for the structural color of butterfly wings. Applied Optics, 2009, 48, 4177–4190.

    Article  Google Scholar 

  125. Zhu D, Kinoshita S, Cai D S, Cole J B. Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density. Physical Review E, 2009, 80, 051924.

  126. Fudouzi H. Tunable structural color in organisms and photonic materials for design of bioinspired materials. Science and Technology of Advanced Materials, 2011, 12, 064704.

  127. Biro L P, Kertesz K, Vertesy Z, Balint Z. Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors. Nature of Light: Light in Nature II, 2008, 7057, 705706.

  128. Zuccarello G, Scribner D, Sands R, Buckley L J. Materials for bio-inspired optics. Advanced Materials, 2002, 14, 1261–1264.

    Article  Google Scholar 

  129. Claussen K U, Scheibel T, Schmidt H W, Giesa R. Polymer gradient materials: Can nature teach us new tricks? Macromolecular Materials and Engineering, 2012, 297, 938–957.

    Article  Google Scholar 

  130. Peisker H, Michels J, Gorb S N. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nature Communications, 2013, 4, 1661.

    Article  Google Scholar 

  131. Guo Z G, Liu W M, Su B L. Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 2011, 353, 335–355.

    Article  Google Scholar 

  132. Wang G Y, Guo Z G, Liu W M, Interfacial effects of superhydrophobic plant surfaces: A review. Journal of Bionic Engineering, 2014, 11, 325–345.

    Article  Google Scholar 

  133. Zhang Y L, Xia H, Kim E, Sun H B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 2012, 8, 11217–11231.

    Article  Google Scholar 

  134. Lafuma A, Quere D. Superhydrophobic states. Nature Materials, 2003, 2, 457–460.

    Article  Google Scholar 

  135. Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004, 20, 3517–3519.

    Article  Google Scholar 

  136. Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003, 19, 1249–1253.

    Article  Google Scholar 

  137. Patankar N A. Transition between superhydrophobic states on rough surfaces. Langmuir, 2004, 20, 7097–7102.

    Article  Google Scholar 

  138. Chen W, Fadeev A Y, Hsieh M C, Oner D, Youngblood J, McCarthy T J. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir, 1999, 15, 3395–3399.

    Article  Google Scholar 

  139. He B, Patankar N A, Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir, 2003, 19, 4999–5003.

    Article  Google Scholar 

  140. Extrand C W. Criteria for ultralyophobic surfaces. Langmuir, 2004, 20, 5013–5018.

    Article  Google Scholar 

  141. Quere D, Lafuma A, Bico J. Slippy and sticky microtextured solids. Nanotechnology, 2003, 14, 1109–1112.

    Article  Google Scholar 

  142. Baumli P, Kaptay G. Wettability of carbon surfaces by pure molten alkali chlorides and their penetration into a porous graphite substrate. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008, 495, 192–196.

    Article  Google Scholar 

  143. Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica, 1996, 77, 213–225.

    Article  Google Scholar 

  144. Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013, 3, 671–690.

    Article  Google Scholar 

  145. Andrady A L, Xu P. Elastic behavior of chitosan films. Journal of Polymer Science Part B: Polymer Physics, 1997, 35, 517–521.

    Article  Google Scholar 

  146. Cheng J C, Pisano A P. Photolithographic process for integration of the biopolymer chitosan into micro/nano structures. Journal of Microelectromechanical Systems, 2008, 17, 402–409.

    Article  Google Scholar 

  147. Ogawa Y, Hori R, Kim U J, Wada M. Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction. Carbohydrate Polymers, 2011, 83, 1213–1217.

    Article  Google Scholar 

  148. Zhang Z Y, Zhao P, Lin P, Sun F G. Thermo-optic coefficients of polymers for optical waveguide applications. Polymer, 2006, 47, 4893–4896.

    Article  Google Scholar 

  149. Sambles J R. Biophotonics blue butterflies feel the heat. Nature Photonics, 2012, 6, 141–142.

    Article  Google Scholar 

  150. Yang Q Q, Zhu S M, Peng W H, Yin C, Wang W L, Gu J J, Zhang W, Ma J, Deng T, Feng C L, Zhang D. Bioinspired fabrication of hierarchically structured, pH-tunable photonic crystals with unique transition. ACS Nano, 2013, 7, 4911–4918.

    Article  Google Scholar 

  151. Aryal M, Ko D H, Tumbleston J R, Gadisa A, Samulski E T, Lopez R. Large area nanofabrication of butterfly wing’s three dimensional ultrastructures. Journal of Vacuum Science & Technology B, 2012, 30, 061802.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Li, B., Mu, Z. et al. Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review. J Bionic Eng 12, 170–189 (2015). https://doi.org/10.1016/S1672-6529(14)60111-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60111-6

Keywords

Navigation