Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-17T10:15:07.145Z Has data issue: false hasContentIssue false

4 - The role of peatlands in climate regulation

from Part I - Peatland ecosystems services

Published online by Cambridge University Press:  05 June 2016

Hans Joosten
Affiliation:
Ernst Moritz Arndt University of Greifswald
Andrey Sirin
Affiliation:
Institute of Forest Science
John Couwenberg
Affiliation:
Ernst Moritz Arndt University of Greifswald
Jukka Laine
Affiliation:
University of Helsinki
Pete Smith
Affiliation:
University of Aberdeen
Aletta Bonn
Affiliation:
German Centre für Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Tim Allott
Affiliation:
University of Manchester
Martin Evans
Affiliation:
University of Manchester
Hans Joosten
Affiliation:
Institute of Botany and Landscape Ecology
Rob Stoneman
Affiliation:
Yorkshire Wildlife Trust
Get access

Summary

Introduction

Peatlands are the world's most important terrestrial ecosystems with respect to carbon (C) storage, and act as a source and sink for GHGs. In this chapter we outline the importance of peatlands in climate regulation and we describe the effects of drainage and restoration.

Peatlands and climate regulation

Description, status and trends

Peatlands are the largest terrestrial store of organic carbon

Peatland ecosystems (including peat and vegetation) contain much more organic carbon than other terrestrial ecosystems. In the (sub)polar zone, peatlands contain on average 3.5 times more carbon per hectare than ecosystems on mineral soil; in the boreal zone seven times more carbon; and in the humid tropics as much as 10 times more carbon (Joosten and Couwenberg 2008). While covering only 3% of the world's land area, peatlands contain 450 Gt of carbon in their peat (Joosten 2009c; Page, Rieley and Banks 2011a). Peatlands are the largest long-term carbon store in the terrestrial biosphere and among the Earth's most important stores.

The huge carbon stock of peatland ecosystems is attributable to the often thick layers of peat. Peat is a highly concentrated stockpile of carbon because it consists by definition of more than 30% (dry mass) of dead organic material that contains 48–63% of carbon. On average, the peatlands of the world hold a carbon pool in their peat of 1125 t C ha-1 (450 Gt/400 × 106 ha), which is the largest carbon density of any terrestrial ecosystem. The ecosystem with the second most carbon per hectare is the giant conifer forest in the Pacific West of North America, which, before human disturbance, reached only half the carbon density of the average peatland (Joosten and Couwenberg 2008).

Estimates of soil C stock to 1 m depth range between 1400 and 1600 Gt C (Smith 2004). Further C is stored deeper: 491 Gt C between 1–2 m depth, and 351 Gt C at 2–3 m depth (Jobbágy and Jackson 2000). The atmosphere (in 1990) contained 750 Gt C, mainly as CO2 and CH4 (Houghton, Jenkins and Ephraums 1990). The global terrestrial plant biomass carbon stock is estimated to be 654 Gt (IPCC 2001) with total global forest biomass holding 335–365 Gt of carbon (Shvidenko et al. 2005).

Type
Chapter
Information
Peatland Restoration and Ecosystem Services
Science, Policy and Practice
, pp. 63 - 76
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×