Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T07:38:54.226Z Has data issue: false hasContentIssue false

Sensitivity amplification in biochemical systems

Published online by Cambridge University Press:  17 March 2009

A. Goldbeter
Affiliation:
Department of Biochemistry, University of California, Berkeley, California 94720, USA
D. E. Koshland Jr
Affiliation:
Department of Biochemistry, University of California, Berkeley, California 94720, USA

Extract

The sensitivity of biological systems to changes in environmental stimuli is connected with their regulatory properties. In order to achieve efficient control, these systems must respond to minute environmental variations by amplifying external stimuli to yield a significant response. To that end, biochemical systems have often evolved to a cascade organization in which the product of the nth reaction in a chain acts as a catalyst in subsequent transformations. The amplification properties of such cascades were first noticed in the process of blood clotting (MacFarlane, 1964, 1969) and visual excitation (Wald, 1965). Later on, a similar organization was noticed in hormonal control of metabolism (Bowness, 1964; Stadtman & Chock, 1977, 1978; Chock, Rhee & Stadtman, 1980).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banks, H. T., Miech, R. F. & Olson, S. L. (1980). A comparison of mathematical models for a recycling cascade in glycogenolysis. Math. Modelling 1, 1326.CrossRefGoogle Scholar
Boulding, K. (1970). conomics as a Science, pp. 7273. New York: McGraw-Hill.Google Scholar
Bowness, J. M. (1964). Epinephrine: cascade reactions and glycogenolytic effect. Science, N.Y. 152, 13701371.CrossRefGoogle Scholar
Chock, P. B. & Stadtman, E. R. (1977). Superiority of interconvertible enzyme cascades in metabolic regulation: analysis of multicyclic systems. Proc. natn. Acad. Sci. U.S.A. 74, 27662770.CrossRefGoogle ScholarPubMed
Chock, P. B., Rhee, S. G. & Stadtman, E. R. (1980). Interconvertible enzyme cascades in cellular regulation. A. Rev. Biochem. 49, 813843.CrossRefGoogle ScholarPubMed
Degn, H. (1960). Bistability caused by substrate inhibition of peroxidase in an open reaction system. Nature 217, 10471050.CrossRefGoogle Scholar
Eschrich, K., Schellenberger, W. & Hofmann, E. (1980). In vitro demonstration of alternative stationary states in an open enzyme system containing phosphofructokinase. Archs. Biochem. Biophys. 205, 114121.CrossRefGoogle Scholar
Goldbeter, A. (1980). In Mathematical Models in Molecular and Cellular Biology (ed. Segel, L. A.), pp. 248291. Cambridge University Press.Google Scholar
Goldbeter, A. & Caplan, S. R. (1976). Oscillatory enzymes. A. Rev. Biophys. Bioeng. 5, 449476.CrossRefGoogle ScholarPubMed
Goldbeter, A. & Koshland, D. E. Jr. (1981). An amplified sensitivity arising from covalent modification in biological systems. Proc. natn. Acad. Sci. U.S.A. 78, 68406844.CrossRefGoogle ScholarPubMed
Goldbeter, A. & Segel, L. A. (1977). Unified mechanism for relay and oscillation of cyclic AMP in Dictyostelium discoideum. Proc. natn. Acad. Sci. U.S.A. 74, 15431547.CrossRefGoogle ScholarPubMed
Heinrich, R. & Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains. Eur. J. Biochem. 42, 8995.CrossRefGoogle ScholarPubMed
Hess, B. & Boiteux, A. (1971). Oscillatory phenomena in biochemistry. A Rev. Biochem. 40, 237258.CrossRefGoogle ScholarPubMed
Higgins, J. (1965). In Control of Energy Metabolism (ed. Chance, B., Estabrook, R. K. and Williamson, J. R.), pp. 1346.New York: Academic Press.CrossRefGoogle Scholar
Kacser, H. & Burns, J. A. (1968). In Quantitative Biology of Metabolism (ed. Locker, A.), pp. 1123. Berlin-Heidelberg-New York: Springer Verlag.CrossRefGoogle Scholar
Kacser, H. & Burns, J. A. (1973). In Rate Control of Biological Processes. Symp. Soc. exp. Biol. no. XXVII, 65104. Cambridge University Press.Google Scholar
Koshland, D. E. Jr. (1981). Biochemistry of sensing and adaptation in a simple bacterial system. A. Rev. Biochem. 50, 765782.CrossRefGoogle Scholar
Koshland, D. E. Jr., Goldbeter, A. & Stock, J. (1982). Amplification and adaptation in regulatory and sensory systems. Science, N. Y. (In the press.)CrossRefGoogle Scholar
Koshland, D. E. Jr., Nemethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, N. Y. 5, 365385.CrossRefGoogle ScholarPubMed
Levine, S. N. (1966). Enzyme amplifier kinetics. Science, N. Y. 152, 651653.CrossRefGoogle ScholarPubMed
Macfarlane, R. G. (1964). An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature, Lond. 202, 498499.CrossRefGoogle ScholarPubMed
Macfarlane, R. G. (1969). The blood clotting mechanism. The development of a theory of blood coagulation. Proc. R. Soc. B 173, 261268.Google ScholarPubMed
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88118.CrossRefGoogle ScholarPubMed
Naparstek, A., Romette, J. L., Kernevez, J. P. & Thomas, D. (1974). Memory in enzyme membranes. Nature, Lond. 249, 490491.CrossRefGoogle ScholarPubMed
Newsholme, E. A. & Crabtree, B. (1976). Substrate cycles in metabolic regulation and in heat generation. Biochem. Soc. Symp. 41, 61109.Google Scholar
Newsholme, E. A. & Start, C. (1973). Regulation in Metabolism. New York, London: Wiley-Interscience.Google Scholar
Nicolis, G. & Prigogine, I. (1977). Self-organization in Nonequilibrium Systems. New York: Wiley.Google Scholar
Roos, W., Nanjundiah, V., Malchow, D. & Gerisch, G. (1975). Amplification of cyclic-AMP signals in aggregating cells of Dictyostelium discoideum. FEBS Lett. 53, 139142.CrossRefGoogle ScholarPubMed
Savageau, M. A. (1971). Concepts relating the behaviour of biochemical systems to their underlying molecular properties. Archs. Biochem. Biophys. 145, 612621.CrossRefGoogle ScholarPubMed
Savageau, M. A. (1976). Biochemical Systems Analysis. Reading, Mass.: Addison Wesley.Google Scholar
Stadtman, E. R. & Chock, P. B. (1977). Superiority of interconvertible enzyme cascades in metabolic regulation: analysis of monocyclic systems. Proc. natn. Acad. Sci. U.S.A. 74, 27612765.CrossRefGoogle ScholarPubMed
Stadtman, E. R. & Chock, P. B. (1978). In Current Topics in Cellular Regulation, vol. 13 (ed. Horeckerand, B. L.Stadtman, E. R.), pp. 5395. New York: Academic Press.Google Scholar
Wald, F. (1965). Visual excitation and blood clotting. Science, N.Y. 150, 10281030.CrossRefGoogle ScholarPubMed