Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T16:03:12.956Z Has data issue: false hasContentIssue false

Long-range distance determinations in biomacromolecules by EPR spectroscopy

Published online by Cambridge University Press:  13 June 2007

Olav Schiemann*
Affiliation:
Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
Thomas F. Prisner*
Affiliation:
Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
*
*Correspondence may be addressed to either author at: Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany. Tel.: +49 (0) 69 798 29 786; Fax: +49 (0) 69 798 29 404. E-mail: O. Schiemann (o.schiemann@epr.uni-frankfurt.de); T. F. Prisner (prisner@chemie.uni-frankfurt.de)
*Correspondence may be addressed to either author at: Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany. Tel.: +49 (0) 69 798 29 786; Fax: +49 (0) 69 798 29 404. E-mail: O. Schiemann (o.schiemann@epr.uni-frankfurt.de); T. F. Prisner (prisner@chemie.uni-frankfurt.de)

Abstract

Electron paramagnetic resonance (EPR) spectroscopy provides a variety of tools to study structures and structural changes of large biomolecules or complexes thereof. In order to unravel secondary structure elements, domain arrangements or complex formation, continuous wave and pulsed EPR methods capable of measuring the magnetic dipole coupling between two unpaired electrons can be used to obtain long-range distance constraints on the nanometer scale. Such methods yield reliably and precisely distances of up to 80 Å, can be applied to biomolecules in aqueous buffer solutions or membranes, and are not size limited. They can be applied either at cryogenic or physiological temperatures and down to amounts of a few nanomoles. Spin centers may be metal ions, metal clusters, cofactor radicals, amino acid radicals, or spin labels. In this review, we discuss the advantages and limitations of the different EPR spectroscopic methods, briefly describe their theoretical background, and summarize important biological applications. The main focus of this article will be on pulsed EPR methods like pulsed electron–electron double resonance (PELDOR) and their applications to spin-labeled biosystems.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Altenbach, C., Marti, T., Khorana, H. G. & Hubbell, W. L. (1990). Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 10881092.CrossRefGoogle ScholarPubMed
Altenbach, C., Oh, K.-J., Trabanino, R. J., Hideg, K. & Hubbell, W. L. (2001). Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40, 1547115482.CrossRefGoogle ScholarPubMed
Amsterdam, I. M. C. V., Ubbink, M., Canters, G. W. & Huber, M. (2003). Measurement of a Cu–Cu distance of 26 Å by a pulsed EPR method. Angewandte Chemie International Edition 42, 6264.CrossRefGoogle ScholarPubMed
Anderson, D. J., Hanson, P., McNulty, J., Millhauser, G., Monaco, V., Formaggio, F., Crisma, M. & Toniolo, C. (1999). Solution structures of TOAC-labeled trichogin GA IV peptides from allowed (g=2) and half-field electron spin resonance. Journal of the American Chemical Society 121, 69196927.CrossRefGoogle Scholar
Arao, S., Yamada, S., Kawamori, A., Shen, J.-R., Ionnidis, N. & Petrouleas, V. (2002). EPR studies of manganese spin centers in the even number oxidation states of water oxidizing complex of photosystem II. In EPR in the 21st Century: Basics and Applications to Material, Life and Earth Science (ed. Ohta, H.), pp. 466470. Amsterdam: Elsevier Science BV.CrossRefGoogle Scholar
Astashkin, A. V., Hara, H. & Kawamori, A. (1998). The pulsed electron–electron double resonance and ‘2+1’ electron spin echo study of the oriented oxygen-evolving and Mn-depleted preparations of photosystem II. Journal of Chemical Physics 108, 38053812.CrossRefGoogle Scholar
Astashkin, A. V., Kodera, Y. & Kawamori, A. (1994). Distance between tyrosines Z+ and D+ in plant photosystem II as determined by pulsed EPR. Biochimica et Biophysica Acta 1187, 8993.CrossRefGoogle Scholar
Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2·4 Å resolution. Science 289, 905920.CrossRefGoogle ScholarPubMed
Banham, J. E., Timmel, C. R., Abbott, R. J. M., Lea, S. M. & Jeschke, G. (2006). The characterization of weak protein–protein interactions: evidence from DEER for the trimerization of a von Willebrand Factor A domain in solution. Angewandte Chemie International Edition 45, 10581061.CrossRefGoogle ScholarPubMed
Becker, J. S. & Saxena, S. (2005). Double quantum coherence electron spin resonance on coupled Cu(II)–Cu(II) electron spins. Chemical Physics Letters 414, 248252.CrossRefGoogle Scholar
Bennati, M., Lendzian, F., Schmittel, M. & Zipse, H. (2005a). Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase. Biological Chemistry 386, 10071022.CrossRefGoogle ScholarPubMed
Bennati, M. & Prisner, T. F. (2005). New developments in high-field electron paramagnetic resonance with applications in structural biology. Reports on Progress in Physics 68, 411448.CrossRefGoogle Scholar
Bennati, M., Robblee, J. H., Mugnaini, V., Stubbe, J., Freed, J. H. & Borbat, P. (2005b). EPR distance measurements support a model for long-range radical initiation in E. coli ribonucleotide reductase. Journal of the American Chemical Society 127, 1501415015.CrossRefGoogle Scholar
Bennati, M., Weber, A., Antonic, J., Perlstein, D. L., Robblee, J. & Stubbe, J. (2003). Pulsed ELDOR spectroscopy measures the distance between the two tyrosyl radicals in the R2 subunit of the E. coli ribonucleotide reductase. Journal of the American Chemical Society 125, 1498814989.CrossRefGoogle ScholarPubMed
Bennett, B., Antholine, W. E., D'souza, V. M., Chen, G., Ustinyuk, L. & Holz, R. C. (2002). Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli. Journal of the American Chemical Society 124, 1302513034.CrossRefGoogle ScholarPubMed
Berliner, L. J. (ed.) (1976). Spin labeling. Theory and applications. In Molecular Biology, New York: Academic Press.Google Scholar
Berliner, L. J. (ed.) (1998). Spin labeling. The next millennium. In Biological Magnetic Resonance, vol. 14. New York: Plenum Press.Google Scholar
Berliner, L. J., Eaton, S. S. & Eaton, G. R. (eds.) (2000). Distance measurements in biological systems by EPR. In Biological Magnetic Resonance, vol. 19. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Berliner, L. J., Grunwald, J., Hankovszky, H. O. & Hideg, K. (1982). A novel reversible thiol-specific spin label: Papain active site labeling and inhibition. Analytical Biochemistry 119, 450455.CrossRefGoogle ScholarPubMed
Berliner, L. J. & Reuben, J. (eds.) (1989). Spin labeling. Theory and applications. In Biological Magnetic Resonance, vol. 8. New York: Plenum Press.Google Scholar
Biglino, D., Schmidt, P. P., Reijerse, R. J. & Lubitz, W. (2006). PELDOR study on the tyrosyl radicals in the R2 protein of mouse ribonucleotide reductase. Physical Chemistry Chemical Physics 8, 5862.CrossRefGoogle Scholar
Bittl, R. & Kawamori, A. (2005). Configuration of electron transfer components studied by EPR spectroscopy. In Photosystem II The Light-Driven Water: Plastochinone Oxidoreductase, vol. 22. Advances in Photosynthesis and Respiration (eds. Wydrzynski, T. J. & Satoh, K.), pp. 389402. Dordrecht: Springer.Google Scholar
Bittl, R. & Kothe, G. (1991). Transient EPR of radical pairs in photosynthetic reaction centers: prediction of quantum beats. Chemical Physics Letters 177, 547553.CrossRefGoogle Scholar
Bittl, R. & Weber, S. (2005). Transient radical pairs studied by time-resolved EPR. Biochimica et Biophysica Acta-Bioenergetics 1797, 117126.CrossRefGoogle Scholar
Bittl, R. & Zech, S. G. (1997). Pulsed EPR study of spin-coupled radical pairs in photosynthetic reaction centers: measurement of the distance between P700●+ and A1●− in photosystem I and between P●+865 and in bacterial reaction centers. Journal of Physical Chemistry 101, 14291436.CrossRefGoogle Scholar
Bittl, R. & Zech, S. G. (2001). Pulsed EPR spectroscopy on short-lived intermediates in photosystem I. Biochimica et Biophysica Acta-Bioenergetics 1507, 194211.CrossRefGoogle ScholarPubMed
Blankenship, R. E., McGuire, A. & Sauer, K. (1975). Chemically induced dynamic electron polarization in chloroplasts at room temperature. Proceedings of the National Academy of Sciences USA 72, 49434947.CrossRefGoogle ScholarPubMed
Bobst, A. M., Pauly, G. T., Keyes, R. S. & Bobst, E. V. (1988). Enzymatic sequence-specific spin labeling of a DNA fragment containing the recognition sequence of EcoRI endonuclease. Federation of European Biochemical Societies Letters 228, 3336.CrossRefGoogle ScholarPubMed
Bock, C. H., Stehlik, D. & Thurnauer, M. C. (1988). Experimental evidence for the anisotropic nature of the transient EPR spectrum from photosystem I observed in cyanobacteria. Israel Journal of Chemistry 28, 177182.CrossRefGoogle Scholar
Bode, B. E., Margraf, D., Plackmeyer, J., Dürner, G., Prisner, T. F. & Schiemann, O. (2007). Counting the monomers in nanometer-sized oligomers by pulsed electron-electron double resonance. Journal of the American Chemical Society, DOI: 10.1021/ja065787t.CrossRefGoogle ScholarPubMed
Bonora, M., Becker, J. & Saxena, S. (2004). Suppression of electron spin-echo envelope modulation peaks in double quantum coherence electron spin resonance. Journal of Magnetic Resonance 170, 278283.CrossRefGoogle ScholarPubMed
Bonvin, A. M. J. J., Boelens, R. & Kaptein, R. (2005). NMR analysis of protein interactions. Current Opinion in Chemical Biology 9, 783790.CrossRefGoogle ScholarPubMed
Borbat, P. P., Costa-Filho, A. J., Earle, K. A., Moscicki, J. K. & Freed, J. H. (2001). Electron spin resonance in studies of membranes and proteins. Science 291, 266269.CrossRefGoogle ScholarPubMed
Borbat, P. P., Davis, J. H., Butcher, S. E. & Freed, J. H. (2004). Measurement of large distances in biomolecules using double-quantum filtered refocused electron spin-echoes. Journal of the American Chemical Society 126, 77467747.CrossRefGoogle ScholarPubMed
Borbat, P. P. & Freed, J. H. (1999). Multiple-quantum ESR and distance measurements. Chemical Physics Letters 313, 145154.CrossRefGoogle Scholar
Borbat, P. P. & Freed, J. H. (2000). Double-quantum ESR and distance measurements. In Distance Measurements in Biological Systems by EPR, vol. 19 (eds. Berliner, L. J., Eaton, S. S. & Eaton, G. R.), pp. 383459. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Borbat, P. P., Mchaourab, H. S. & Freed, J. H. (2002). Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. Journal of the American Chemical Society 124, 53045314.CrossRefGoogle ScholarPubMed
Borbat, P. P., Ramlall, T. F., Freed, J. H. & Eliezer, D. (2006). Inter-helix distances in lysophospholipid micelle-bound α-synuclein from pulsed ESR measurements. Journal of the American Chemical Society 128, 1000410005.CrossRefGoogle ScholarPubMed
Borovykh, I. V., Ceola, S., Gajula, P., Gast, P., Steinhoff, H.-J. & Huber, M. (2006). Distance between a native cofactor and a spin label in the reaction center of Rhodobacter sphaeroides by a two-frequency pulsed electron paramagnetic resonance method and molecular dynamics simulations. Journal of Magnetic Resonance 180, 178185.CrossRefGoogle Scholar
Borovykh, I. V., Kulik, L. V., Gast, P. & Dzuba, S. A. (2003). Conformation transition in the protein of a photosynthetic reaction center observed at the nanometer range of distances at cryogenic temperatures. Chemical Physics 294, 433438.CrossRefGoogle Scholar
Bowman, M. K., Becker, D., Sevilla, M. D. & Zimbrick, J. D. (2005). Track structure in DNA irradiated with heavy ions. Radiation Research 163, 447454.CrossRefGoogle ScholarPubMed
Bowman, M. K., Maryasov, A. G., Kim, N. & DeRose, V. J. (2004). Visualization of distance distribution from pulsed double electron–electron resonance data. Applied Magnetic Resonance 26, 2339.CrossRefGoogle Scholar
Brown, L. J., Sale, K., Hills, R., Rouviere, C., Song, L., Zhang, X. & Fajer, P. (2002). Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance. Proceedings of the National Academy of Sciences USA 99, 1276512770.CrossRefGoogle ScholarPubMed
Brudvig, G. W., Blair, D. F. & Chan, S. I. (1984). Electron spin relaxation of CuA and cytochrome a in cytochrome c oxidase. Journal of Biological Chemistry 259, 1100111009.CrossRefGoogle ScholarPubMed
Cai, Q., Kusnetzow, A. K., Hubbell, W. L., Haworth, I. S., Gacho, G. P. C., Eps, N. V., Hideg, K., Chambers, E. J. & Qin, P. Z. (2006). Site-directed spin labeling measurements of nanometer distances in nucleic acids using a sequence-independet nitroxide probe. Nucleic Acids Research 34, 47224730.CrossRefGoogle ScholarPubMed
Calle, C., Sreekanth, A., Fedin, M. V., Forrer, J., Garcia-Rubio, I., Gromov, I. A., Hinderberger, D., Kasumaj, B., Léger, P., Mancosu, B., Mitrikas, G., Santangelo, M. G., Stoll, S., Schweiger, A., Tschaggelar, R. & Harmer, J. (2006). Pulse EPR methods for studying chemical and biological samples containing transition metals. Helvetica Chimica Acta 89, 24952521.CrossRefGoogle Scholar
Caron, M. & Dugas, H. (1976). Specific spin-labeling of transfer ribonucleic acid molecules. Nucleic Acids Research 3, 1934.CrossRefGoogle ScholarPubMed
Cekan, P. & Sigurdsson, S. T. (2005). Spin labeled nucleic acids for EPR spectroscopic study of DNA and RNA structure and function. Collection Symposium Series 7, 225228.CrossRefGoogle Scholar
Chiang, Y.-W., Borbat, P. P. & Freed, J. H. (2005a). The determination of pair distance distributions by pulsed EPR using Tikhonov regularization. Journal of Magnetic Resonance 172, 279295.CrossRefGoogle Scholar
Chiang, Y.-W., Borbat, P. P. & Freed, J. H. (2005b). Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed EPR. Journal of Magnetic Resonance 177, 184196.CrossRefGoogle Scholar
Codd, R., Astashkin, A. V., Pacheco, A., Raitsimring, A. M. & Enemark, J. H. (2002). Pulsed ELDOR spectroscopy of the Mo(V)/Fe(III) state of sulfite oxidase prepared by one-electron reduction with Ti(III) citrate. Journal of Biological Inorganic Chemistry 7, 338350.CrossRefGoogle Scholar
Cramer, P., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: RNA polymerase II at 2·8 Å resolution. Science 292, 18631876.CrossRefGoogle Scholar
Darian, E. & Gannett, P. M. (2005). Application of molecular dynamics simulations to spin-labeled oligonucleotides. Journal of Biomolecular Structure & Dynamics 22, 579593.CrossRefGoogle ScholarPubMed
Deisenhofer, J., Miki, K., Huber, R. & Michel, H. (1986). Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618624.CrossRefGoogle Scholar
Deligiannakis, Y. & Rutherford, A. W. (1996). Spin-lattice relaxation of the pheophytin, Pheo, radical of photosystem II. Biochemistry 35, 1123911246.CrossRefGoogle ScholarPubMed
Denysenkov, V. P., Prisner, T. F., Stubbe, J. & Bennati, M. (2005). High-frequency 180 GHz PELDOR. Applied Magnetic Resonance 29, 375384.CrossRefGoogle Scholar
Denysenkov, V. P., Prisner, T. F., Stubbe, J. & Bennati, M. (2006). High-field pulsed electron–electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. Proceedings of the National Academy of Sciences USA 103, 1338613390.CrossRefGoogle ScholarPubMed
Donaldson, L. W., Skrynnikov, N. R., Choy, W.-Y., Muhandiram, D. R., Sarkar, B., Forman-Kay, J. D. & Kay, L. E. (2001). Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. Journal of the American Chemical Society 123, 98439847.CrossRefGoogle ScholarPubMed
Dzikovski, B. G., Borbat, P. P. & Freed, J. H. (2004). Spin-labeled Gramicidin A: channel formation and dissociation. Biophysical Journal 87, 35043517.CrossRefGoogle ScholarPubMed
Dzuba, S. A., Gast, P. & Hoff, A. J. (1995). ESEEM study of spin–spin interactions in spin-polarized P+QA pairs in the photosynthetic purple bacterium Rhodobacter sphaeroides R26. Chemical Physics Letters 236, 595602.CrossRefGoogle Scholar
Dzuba, S. A., Gast, P. & Hoff, A. J. (1997). Probing the energy landscape of bacterial photosynthetic reaction centers at cryogenic temperatures by ESEEM of spin-polarized D+QA radical pairs. Chemical Physics Letters 268, 273279.CrossRefGoogle Scholar
Dzuba, S. A. & Hoff, A. J. (2000). Photo-induced radical pairs investigated using out-of-phase Electron Spin echo. In Distance Measurements in Biological Systems by EPR, Biological Magnetic Resonance, vol. 19 (eds. Berliner, L. J., Eaton, S. S. & Eaton, G. R.), pp. 569596. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Eaton, S. S. & Eaton, G. R. (2002). Electron paramagnetic resonance techniques for measuring distances in proteins. Structures and Mechanisms: from ashes to enzymes. ACS Symposium Series 827, 321339.CrossRefGoogle Scholar
Eaton, S. S. & Eaton, G. R. (2004). Measurements of interspin distances by EPR. Specialist Periodical Reports on Electron Spin Resonance 19, 318337.Google Scholar
Edwards, T. E., Okonogi, T. M., Robinson, B. H. & Sigurdsson, S. T. (2001). Site-specific incorporation of nitroxide spin-labels into internal sites of the TAR RNA; Structure-dependent dynamics of RNA by EPR spectroscopy. Journal of the American Chemical Society 123, 15271528.CrossRefGoogle ScholarPubMed
Elsässer, C., Brecht, M. & Bittl, R. (2002). Pulsed electron–electron double resonance on multinuclear metal clusters: assignment of spin projection factors based on the dipolar interaction. Journal of the American Chemical Society 124, 1260612611.CrossRefGoogle ScholarPubMed
Elsässer, C., Brecht, M. & Bittl, R. (2005). Treatment of spin-coupled metal-centres in pulsed electron–electron double-resonance experiments. Biochemical Society Transactions 33, 1519.CrossRefGoogle Scholar
Ernst, R. R. (1992). Nuclear magnetic resonance Fourier transform spectroscopy. Angewandte Chemie International Edition 31, 805823.CrossRefGoogle Scholar
Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1990). Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press.CrossRefGoogle Scholar
Est, A. V. D., Bittl, R., Abresch, E. C., Lubitz, W. & Stehlik, D. (1993). Transient EPR spectroscopy of perdeuterated Zn-substituted reaction centers of Rhodobacter sphaeroides R-26. Chemical Physics Letters 212, 561568.Google Scholar
Est, A. V. D., Prisner, T. F., Bittl, R., Fromme, P., Lubitz, W., Möbius, K. & Stehlik, D. (1997). Time resolved multi-frequency EPR of the state P700+● A1−● in Photosystem I of Synechoccus elongatus and a comparison with P865+ QA in reaction centres of Rhodobacter sphaeroides R-26. Journal of Physical Chemistry B 101, 1437.Google Scholar
Fajer, P. G. (2005). Site directed spin labeling and pulsed dipolar electron paramagnetic resonance (double electron–electron resonance) of force activation in muscle. Journal of Physics 17, S1459S1469.Google Scholar
Farrens, D., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. (1996). Requirement of rigid-body motion of transmembrane helices for light activation of Rhodopsin. Science 274, 768770.CrossRefGoogle ScholarPubMed
Freed, J. H. (2000). New technologies in electron spin resonance. Annual Reviews of Physical Chemistry 51, 655689.CrossRefGoogle ScholarPubMed
Fritscher, J., Artin, E., Wnuk, S., Bar, G., Robblee, J. H., Kacprzak, S., Kaupp, M., Griffin, R. G., Bennati, M. & Stubbe, J. (2005). Structure of the nitrogen-centered radical formed during inactivation of E. coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine-5′-diphosphate: trapping of the 3′-ketonucleotide. Journal of the American Chemical Society 127, 77297738.CrossRefGoogle Scholar
Gannett, P. M., Darian, E., Powell, J., Johnson, E. M. I., Mundoma, C., Greenbaum, N. L., Ramsey, C. M., Dalal, N. S. & Budil, D. E. (2002). Probing triplex formation by EPR spectroscopy using a newly synthesized spin label for oligonucleotides. Nucleic Acids Research 30, 53285337.CrossRefGoogle ScholarPubMed
Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: an RNA polymerase II elongation complex at 3·3 Å resolution. Science 292, 18761882.CrossRefGoogle ScholarPubMed
Godt, A., Franzen, C., Veit, S., Enkelmann, V., Pannier, M. & Jeschke, G. (2000). EPR probes with well-defined, long distances between two or three unpaired electrons. Journal of Organic Chemistry 65, 75757582.CrossRefGoogle ScholarPubMed
Godt, A., Schulte, M., Zimmermann, H. & Jeschke, G. (2006). How flexible are poly(paraphenyleneethynylene)s? Angewandte Chemie International Edition 45, 77227726.CrossRefGoogle Scholar
Golombek, A. P. & Hendrich, M. P. (2003). Quantitative analysis of dinuclear manganese(II) EPR spectra. Journal of Magnetic Resonance 165, 3348.CrossRefGoogle ScholarPubMed
Goodman, G., John, S. & Leigh, J. (1985). Distance between the visible copper and cytochrome a in bovine heart cytochrome oxidase. Biochemistry 24, 23102317.CrossRefGoogle ScholarPubMed
Gordeliy, V. I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Büldt, G., Savopol, T., Scheidig, A. J., Klare, J. P. & Engelhard, M. (2002). Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484487.CrossRefGoogle ScholarPubMed
Gullion, T. & Schaefer, J. (1989). Rotational-echo double-resonance NMR. Journal of Magnetic Resonance 81, 196200.Google Scholar
Gullion, T. & Vega, A. J. (2005). Measuring heteronuclear dipolar couplings for I=1/2, S>1/2 spin pairs by REDOR and REAPDOR NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 47, 123136.CrossRefGoogle Scholar
Hanson, P., Millhauser, G. L., Formaggio, F., Crisma, M. & Toniolo, C. (1996). ESR characterization of hexameric, helical peptides using double TOAC spin labeling. Journal of the American Chemical Society 118, 76187625.CrossRefGoogle Scholar
Hara, H., Dzuba, S. A., Kawamori, A., Akabori, K., Tomo, T., Satoh, K., Iwaki, M. & Itoh, S. (1997). The distance between P680 and QA in Photosystem II determined by ESEEM spectroscopy. Biochimica et Biophysica Acta 1322, 7785.CrossRefGoogle Scholar
Hara, H., Horiuche, T., Saneyoshi, M. & Nishimura, S. (1970). 4-Thiouridine-specific spin-labeling. Biochemical and Biophysical Research Communications 38, 305311.CrossRefGoogle ScholarPubMed
Hara, H., Kawamori, A., Astashkin, A. V. & Ono, T.-A. (1996). The distances from tyrosine D to redox-active components on the donor side of photosystem II determined by pulsed electron-electron double resonance. Biochimica et Biophysica Acta 1276, 140146.CrossRefGoogle Scholar
Hertel, M. M., Denysenkov, V. P., Bennati, M. & Prisner, T. F. (2005). Pulsed 180-GHz EPR/ENDOR/PELDOR spectroscopy. Magnetic Resonance in Chemistry 43, S248S255.CrossRefGoogle ScholarPubMed
Hilger, D., Jung, H., Padan, E., Wegener, C., Vogel, K.-P., Steinhoff, H.-J. & Jeschke, G. (2005). Assessing oligomerization of membrane proteins by four-pulse DEER: pH-dependent dimerization of NhaA Na+/H+ antiporter of E. coli. Biophysical Journal 89, 13281338.CrossRefGoogle ScholarPubMed
Hirsh, D. J., Beck, W. F., Innes, J. B. & Brudvig, G. W. (1992). Using saturation-recovery EPR to measure distances in proteins: applications to photosystem II. Biochemistry 31, 532541.CrossRefGoogle ScholarPubMed
Hoff, A. J. (ed.) (1989). Advanced EPR. Applications in Biology and Biochemistry. Amsterdam: Elsevier.Google Scholar
Hoff, A. J., Gast, P. & Romijn, J. C. (1977). Time-resolved ESR and chemically induced dynamic electron polarization of the primary reaction in a reaction center of Rhodopseudomonas sphaeroides wild type at low temperatures. Federation of European Biochemical Societies Letters 73, 185190.CrossRefGoogle Scholar
Högbom, M., Galander, M., Andersson, M., Kolberg, M., Hofbauer, W., Lassmann, G., Nordlund, P. & Lendzian, F. (2003). Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1·4 Å X-ray data. Proceedings of the National Academy of Sciences USA 100, 32093214.CrossRefGoogle ScholarPubMed
Hore, P. J., Hunter, D. A., McKie, C. D. & Hoff, A. J. (1987). Electron paramagnetic resonance of spin-correlated radical pairs in photosynthetic reactions. Chemical Physics Letters 137, 459500.CrossRefGoogle Scholar
Hubbell, W. L., Cafiso, D. S. & Altenbach, C. (2000). Identifying conformational changes with site-directed spin labeling. Nature Structural Biology 7, 735739.CrossRefGoogle ScholarPubMed
Hubbell, W. L., Gross, A., Langen, R. & Lietzow, M. A. (1998). Recent advances in site-directed spin labeling of proteins. Current Opinion in Structural Biology 8, 649656.CrossRefGoogle ScholarPubMed
Hung, S.-C., Grant, C. V., Peloquin, J. M., Waldeck, A. R., Britt, R. D. & Chan, S. I. (2000). Electron spin-lattice relaxation measurement of the 3Fe–4S (S-3) cluster in succinate:ubiquinone reductase from Paracoccus denitrificans. A detailed analysis based on a dipole–dipole interaction model. Journal of Physical Chemistry B 104, 44024412.CrossRefGoogle Scholar
Hustedt, E. J. & Beth, A. H. (1999). Nitroxide spin–spin interactions: applications to protein structure and dynamics. Annual Review of Biophysics and Biomolecular Structure 28, 129153.CrossRefGoogle ScholarPubMed
Hustedt, E. J. & Beth, A. H. (2000). Structural information from CW-EPR spectra of dipolar coupled nitroxide spin labels. In Distance Measurements in Biological Systems by EPR, vol. 19 (eds. Berliner, L. J., Eaton, S. S. & Eaton, G. R.), pp. 155184. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Hustedt, E. J., Smirnov, A. I., Laub, C. F., Cobb, C. E. & Beth, A. H. (1997). Molecular distances from dipolar coupled spin labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophysical Journal 74, 18611877.CrossRefGoogle Scholar
Hustedt, E. J., Stein, R. A., Sethaphong, L., Brandon, S., Zhou, Z. & DeSensi, S. C. (2006). Dipolar coupling between nitroxide spin labels: the development and application of a tether-in-a-cone model. Biophysical Journal 90, 340345.CrossRefGoogle ScholarPubMed
Iwahara, J. & Clore, G. M. (2006). Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 440, 12271230.CrossRefGoogle ScholarPubMed
Jeschke, G. (2002). Determination of the nanostructure of polymer materials by electron paramagnetic resonance spectroscopy. Macromolecular Rapid Communications 23, 227246.3.0.CO;2-D>CrossRefGoogle Scholar
Jeschke, G., Bender, A., Paulsen, H., Zimmermann, H. & Godt, A. (2004a). Sensivity enhancement in pulse EPR distance measurements. Journal of Magnetic Resonance 169, 112.CrossRefGoogle Scholar
Jeschke, G., Bender, A., Schweikardt, T., Panek, G., Decker, H. & Paulsen, H. (2005). Localization of the N-terminal domain in light-harvesting chlorophyll a/b protein by EPR measurements. Journal of Biological Chemistry 280, 1862318630.CrossRefGoogle ScholarPubMed
Jeschke, G., Koch, A., Jonas, U. & Godt, A. (2002). Direct conversion of EPR dipolar time evolution data to distance Distributions. Journal of Magnetic Resonance 155, 7282.CrossRefGoogle ScholarPubMed
Jeschke, G., Panek, G., Godt, A., Bender, A. & Paulsen, H. (2004b). Data analysis procedures for pulse ELDOR measurements of broad distance distributions. Applied Magnetic Resonance 26, 223244.CrossRefGoogle Scholar
Jeschke, G., Pannier, P., Godt, A. & Spiess, H. W. (2000). Dipolar spectroscopy and spin alignment in electron paramagnetic resonance. Chemical Physics Letters 331, 243252.CrossRefGoogle Scholar
Jeschke, G. & Schlick, S. (2006). Spatial distribution of stabilizer-derived nitroxide radicals during thermal degradation of poly(acrylonitrile-butadiene-styrene) copolymers: a unified picture from pulsed ELDOR and ESR imaging. Physical Chemistry Chemical Physics 8, 40954103.CrossRefGoogle ScholarPubMed
Jeschke, G., Wegener, C., Nietschke, M., Jung, H. & Steinhoff, H.-J. (2004c). Interresidual distance determination by four-pulse double electron–electron resonance in an integral membrane protein: the Na+/proline transporter PutP of Escherichia coli. Biophysical Journal 86, 25512557.CrossRefGoogle Scholar
Jeschke, G., Zimmermann, H. & Godt, A. (2006). Isotope selection in distance measurements between nitroxides. Journal of Magnetic Resonance 180, 137146.CrossRefGoogle ScholarPubMed
Jun, S., Becker, J. S., Yonkunas, M., Coalson, R. & Saxena, S. (2006). Unfolding of alanine-based peptides using electron spin resonance distance measurements. Biochemistry 45, 1166611673.CrossRefGoogle ScholarPubMed
Kahn, O. (1993). Molecular Magnetism. New York: Wiley-VCH.Google Scholar
Käss, H., MacMillan, F., Ludwig, B. & Prisner, T. F. (2000). Investigation of the Mn binding site in cytochrome c oxidase from Paracoccus denitrificans by high-frequency EPR. Journal of Physical Chemistry B 104, 53625371.CrossRefGoogle Scholar
Käss, H., Stürzel, M., Ludwig, B., Dinse, K. P. & Prisner, T. F. (1998). Investigation of a Mn binding site in cytochrome c oxidase by high-frequency EPR. Proceedings of the 28th Congress AMPERE on Magnetic Resonance and Related Phenomena, 877.Google Scholar
Kawamori, A., Katsuta, N. & Hara, H. (2003). Structural analysis of three-spin systems of photosystem II by PELDOR. Applied Magnetic Resonance 23, 557569.CrossRefGoogle Scholar
Kawamori, A., Katsuta, N., Mino, H., Ishii, A., Minagawa, J. & Ono, T.-A. (2002). Positions of QA and ChlZ relative to tyrosine YZ and YD in photosystem II studied by pulsed EPR. Journal of Biological Physics 28, 413426.CrossRefGoogle Scholar
Kawamori, A., Ono, T.-A., Ishii, A., Nakazawa, S., Hara, H., Tomo, T., Minagawa, J., Bittl, R. & Dzuba, S. A. (2005). The functional site of chlorophylls in D1 and D2 subunits of photosystem II identified by pulsed EPR. Photosynthesis Research 84, 187192.CrossRefGoogle ScholarPubMed
Kay, C. W. M., Elsässer, C., Bittl, R., Farrell, S. R. & Thorpe, C. (2006). Determination of the distance between the two neutral flavin radicals in augmenter of liver regeneration by Pulsed ELDOR. Journal of the American Chemical Society 128, 7677.CrossRefGoogle ScholarPubMed
Keyes, R. S. & Bobst, A. M. (1998). Spin-labeled nucleic acids. In Spin Labeling. The Next Millennium, vol. 14 (ed. Berliner, L. J.), pp. 283338. New York: Plenum Press.Google Scholar
Khangulov, S. V., Pessiki, P. J., Barynin, V. V., Ash, D. E. & Dismukes, G. C. (1995). Determination of the metal ion separation and energies of the three lowest electronic states of dimanganese(II,II) complexes and enzymes: catalase and liver arginase. Biochemistry 34, 20152025.CrossRefGoogle ScholarPubMed
Kim, N.-K., Murali, A. & DeRose, V. J. (2004). A distance ruler for RNA using EPR and site-directed spin labeling. Chemistry & Biology 11, 939948.CrossRefGoogle ScholarPubMed
Klare, J. P., Gordeliy, V. I., Labahn, J., Büldt, G., Steinhoff, H.-J. & Engelhard, M. (2004). The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. Federation of European Biochemical Societies Letters 564, 219224.CrossRefGoogle Scholar
Kodera, Y., Dzuba, S. A., Hara, H. & Kawamori, A. (1994). Distances from tyrosine D+ to the manganese cluster and the acceptor iron in Photosystem II as determined by selective hole burning in EPR spectra. Biochimica et Biophysica Acta 1186, 9199.CrossRefGoogle Scholar
Kokorin, A. I., Zamarayev, K. I., Grigoryan, G. L., Ivanov, V. P. & Rozantsev, E. G. (1972). Measurements of the distance between the paramagnetic centers in solid solutions of nitroxide radicals, biradicals, and spin-labeled proteins. Biofizika 17, 3441.Google Scholar
Kolberg, M., Strand, K. R., Graff, P. & Andersson, K. K. (2004). Structure, function, and mechanism of ribonucleotide reductase. Biochimica et Biophysica Acta 1699, 134.CrossRefGoogle Scholar
Kothe, G., Weber, S., Bittl, R., Ohmes, E., Thurnauer, M. C. & Norris, J. R. (1991). Transient EPR of light-induced radical pairs in plant photosystem I: observation of quantum beats. Chemical Physics Letters 186, 474479.CrossRefGoogle Scholar
Kothe, G., Weber, S., Ohmes, E., Thurnauer, M. C. & Norris, J. R. (1994). High time resolution electron paramagnetic resonance of light-induced radical pairs in photosynthetic bacterial reaction centers: observation of quantum beats. Journal of the American Chemical Society 116, 77297734.CrossRefGoogle Scholar
Kulik, L. V., Borovykh, I. V., Gast, P. & Dzuba, S. A. (2003). Selective excitation in pulsed EPR of a spin-correlated triplet-radical pair. Journal of Magnetic Resonance 162, 423428.CrossRefGoogle ScholarPubMed
Kulik, L. V., Dzuba, S. A., Grigoryev, I. A. & Tsvetkov, Y. D. (2001). Electron dipole–dipole interaction in ESEEM of nitroxide biradicals. Chemical Physics Letters 343, 315324.CrossRefGoogle Scholar
Kulik, L. V., Pachenko, S. V. & Dzuba, S. A. (2002). 130 GHz ESEEM induced by electron–electron interaction in biradicals. Journal of Magnetic Resonance 159, 237241.CrossRefGoogle Scholar
Kulikov, A. V. & Likhtenstein, G. I. (1977). The use of spin relaxation phenomena in the investigation of the structure of model and biological systems by the method of spin labels. Advances in Molecular Relaxation and Interaction Processes 10, 4779.CrossRefGoogle Scholar
Kuroiwa, S., Tonaka, M., Kawamori, A. & Akabori, K. (2000). The position of cytochrome b 559 relative to QA in photosystem II studied by electron–electron double resonance (ELDOR). Biochimica et Biophysica Acta 1460, 330337.CrossRefGoogle ScholarPubMed
Kurshev, V. V., Raitsimring, A. M. & Tsvetkov, Y. D. (1988). Selection of dipolar interaction by the ‘2+1’ pulse traLn ESE. Institute of Chemical Kinetics and Combustion, 441455.Google Scholar
Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy, 3rd edn. New York: Springer.CrossRefGoogle Scholar
Lakshmi, K. V. & Brudvig, G. W. (2000). Electron paramagnetic resonance distance measurements in photosynthetic reaction centers. In Distance Measurements in Biological Systems by EPR, Biological Magnetic Resonance, vol. 19 (eds. Berliner, L. J., Eaton, S. S. & Eaton, G. R.), pp. 513567. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Lakshmi, K. V. & Brudvig, G. W. (2001). Pulsed electron paramagnetic resonance methods for macromolecular structure determination. Biophysical Methods 11, 523531.Google ScholarPubMed
Lakshmi, K. V., Poluektov, O. G., Reifler, M. J., Wagner, A. M., Thurnauer, M. C. & Brudvig, G. W. (2003). Pulsed high-frequency EPR study on the location of carotenoid and chlorophyll cation radicals in photosystem II. Journal of the American Chemical Society 125, 50055014.CrossRefGoogle Scholar
Langen, R., Oh, K.-J., Cascio, D. & Hubbell, W. L. (2000). Crystal structures of spin labeled T4 Lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39, 83968405.CrossRefGoogle ScholarPubMed
Larsen, R. G. & Sigel, D. J. (1993). Double electron-electron resonance spin-echo modulation: spectroscopic measurement of electron spin pair separations in orientationally disordered solids. Journal of Chemical Physics 98, 51345146.CrossRefGoogle Scholar
Liang, Z. L., Freed, J. H., Keyes, R. S. & Bobst, A. M. (2000). An electron spin resonance study of DNA dynamics using the slowly relaxing local structure model. Journal of Physical Chemistry B 104, 53725381.CrossRefGoogle Scholar
Likhtenshtein, G. I. (1993). Biophysical Labeling Methods in Molecular Biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Link, G., Berthold, T., Bechtold, M., Weidner, J.-U., Ohmes, E., Tang, J., Poluektov, O., Utschig, L., Schlesselman, S. L., Thurnauer, M. C. & Kothe, G. (2001). Structure of the P+700 A1 radical pair intermediate in photosystem I by high time resolution multifrequency electron paramagnetic resonance: analysis of quantum beat oscillations. Journal of the American Chemical Society 123, 42114222.CrossRefGoogle Scholar
Liu, Y.-S., Sompornpisut, P. & Perozo, E. (2001). Structure of the KcsA channel intracellular gate in the open state. Nature Structural Biology 8, 883887.CrossRefGoogle ScholarPubMed
Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. (2005). Towards complete cofactor arrangement in the 3·0 Å resolution structure of photosystem II. Nature 438, 10401044.CrossRefGoogle ScholarPubMed
Lubitz, W. (2004). EPR in Photosynthesis. In Electron Paramagnetic Resonance, vol. 19 (ed. Murphy, D. M.), pp. 174242. London: Royal Society of Chemistry.Google Scholar
Lubitz, W. & Feher, G. (1999). The primary and secondary acceptors in bacterial photosynthesis III. Characterization of the quinone radicals QA−● and QB−● by EPR and ENDOR. Applied Magnetic Resonance 17, 148.CrossRefGoogle Scholar
Lubitz, W., Lendzian, F. & Bittl, R. (2002). Radicals, radical pairs and triplet states in photosynthesis. Accounts of Chemical Research 35, 313320.CrossRefGoogle ScholarPubMed
Luoma, G. A., Herring, F. G. & Marshall, A. G. (1982). Flexibility of end-labeled polymers from electron spin resonance line-shape analysis: 3′ terminus of transfer ribonucleic acid and 5S ribonucleic acid. Biochemistry 21, 65916598.CrossRefGoogle ScholarPubMed
Lyubenova, S., Siddiqui, M. K., Penning de Vries, M. J. M., Ludwig, B. M., Ludwig, B. & Prisner, T. F. (2007). Protein-Protein Interactions Studied by EPR Relaxation Measurements: Cytochrome c and Cytochrome c Oxidase. Journal of Physical Chemistry B 111, 38393846.CrossRefGoogle ScholarPubMed
MacArthur, R. & Brudvig, G. W. (2004). Location of EPR-active spins buried in proteins from the simulation of the spin-lattice relaxation enhancement caused by Dy(III) complexes. Journal of Physical Chemistry B 108, 93909396.CrossRefGoogle Scholar
Macosko, J. C., Pio, M. S., Tinoco, I. & Shin, Y.-K. (1999). A novel 5′ displacement spin-labeling technique for electron paramagnetic resonance spectroscopy of RNA. RNA 5, 11581166.CrossRefGoogle ScholarPubMed
Mamedov, F., Smith, P. J., Styring, S. & Pace, R. J. (2004). Relaxation behaviour of the tyrosine YD radical in photosystem II: evidence for strong dipolar interaction with paramagnetic centers in the S1 and S2 states. Physical Chemistry Chemical Physics 6, 48904896.CrossRefGoogle Scholar
Marchetto, R., Schreier, S. & Nakaie, C. R. (1993). A novel spin-labeled amino acid derivative for use in peptide synthesis: (9-Fluorenylmethyloxycarbonyl)-2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic Acid. Journal of the American Chemical Society 115, 1104211043.CrossRefGoogle Scholar
Marsh, D. & Horvath, L. I. (1989). Spin label studies of the structure and dynamics of lipids and proteins in membranes. In Advanced EPR. Applications in Biology and Biochemistry (ed. Hoff, A. J.), pp. 707752. Amsterdam: Elsevier.Google Scholar
Martin, R. E., Pannier, M., Diederich, F., Gramlich, V., Hubrich, M. & Spiess, H. W. (1998). Determination of end-to-end distances in a series of TEMPO diradicals of up to 2·8 nm length with a new four-pulse double electron–electron resonance experiment. Angewandte Chemie International Edition 37, 28342837.3.0.CO;2-7>CrossRefGoogle Scholar
McIntosh, A. R., Caron, M. & Dugas, H. (1973). A specific spin labeling of the anticodon of E. coli tRNAGlu. Biochemical and Biophysical Research Communications 55, 13561362.CrossRefGoogle Scholar
McNulty, J. C. & Millhauser, G. L. (2000). TOAC. The rigid nitroxide side chain. In Distance Measurements in Biological Systems by EPR, vol. 19 (eds Berliner, L. J., Eaton, S. S. & Eaton, G. R.), pp. 277307. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Mehring, M. & Weberruß, V. A. (2001). Object-Oriented Magnetic Resonance. San Diego: Academic Press.Google Scholar
Miller, T. R., Alley, S. C., Reese, A. W., Solomon, M. S., MacCallister, W. V., Mailer, C., Robinson, B. H. & Hopkins, P. B. (1995). A probe for sequence-dependent nucleic acid dynamics. Journal of the American Chemical Society 117, 93779378.CrossRefGoogle Scholar
Milov, A. D., Erilov, D. A., Salnikov, E. S., Tsvetkov, Y. D., Formaggio, F., Toniolo, C. & Raap, J. (2005). Structure and spatial distribution of the spin-labeled lipopeptide trichogin GA IV in a phospholipid membrane studied by pulsed electron–electron double resonance (PELDOR). Physical Chemistry Chemical Physics 7, 17941799.CrossRefGoogle Scholar
Milov, A. D., Maryasov, A. G. & Tsvetkov, Y. D. (1998). Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Applied Magnetic Resonance 15, 107143.CrossRefGoogle Scholar
Milov, A. D., Maryasov, A. G., Tsvetkov, Y. D. & Raap, J. (1999). Pulsed ELDOR in spin-labeled polypeptides. Chemical Physics Letters 303, 135143.CrossRefGoogle Scholar
Milov, A. D., Ponomarev, A. B. & Tsvetkov, Y. D. (1984). Electron–electron double resonance in electron spin echo: model biradical systems and the sensitized photolysis of decalin. Chemical Physics Letters 110, 6772.CrossRefGoogle Scholar
Milov, A. D., Salikhov, K. M. & Shchirov, M. D. (1981). Application of the double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids. Sovietscaya Physics Solid Stated 23, 565569.Google Scholar
Milov, A. D., Samoilova, R. I., Tsvetkov, Y. D., Peggion, C., Formaggio, F., Toniolo, C. & Raap, J. (2006). Aggregation on spin-labeled alamethicin in low-polarity solutions as studied by PELDOR spectroscopy. Physical Chemistry 406, 2125.Google Scholar
Milov, A. D., Tsvetkov, Y. D., Formaggio, F., Crisma, M., Toniolo, C. & Raap, J. (2000). Self-assembling properties of membrane-modifying peptides studied by PELDOR and CW-ESR spectroscopies. Journal of the American Chemical Society 122, 38433848.CrossRefGoogle Scholar
Milov, A. D., Tsvetkov, Y. D., Formaggio, F., Crisma, M., Toniolo, C. & Raap, J. (2001). The secondary structure of a membrane-modifying peptide in a supramolecular assembly studied by PELDOR and CW-ESR spectroscopies. Journal of the American Chemical Society 123, 37843789.CrossRefGoogle Scholar
Milov, A. D., Tsvetkov, Y. D., Formaggio, F., Oancea, S., Toniolo, C. & Raap, J. (2003). Aggregation of spin labeled trichogin GA IV dimers: distance distributions between spin labels in frozen solutions by PELDOR data. Journal of Physical Chemistry 107, 1371913727.CrossRefGoogle Scholar
Milov, A. D., Tsvetkov, Y. D., Formaggio, F., Oancea, S., Toniolo, C. & Raap, J. (2004). Solvent effect on the distance distribution between spin labels in aggregated spin labeled trichogin GA IV dimer peptides as studied by pulsed electron–electron double resonance. Physical Chemistry Chemical Physics 6, 35963603.CrossRefGoogle Scholar
Milov, A. D., Tsvetkov, Y. D., Gorbunova, E. Y., Mustaeva, L. G., Ovchinnikova, T. V. & Raap, J. (2002). Self-aggregation properties of spin-labeled zervamicin IIA as studied by PELDOR spectroscopy. Biopolymers 64, 328336.CrossRefGoogle ScholarPubMed
Mims, W. B. (1972). Electron spin echos. In Electron Paramagnetic Resonance (ed. Geschwind, S.), pp. 263351. New York: Plenum.CrossRefGoogle Scholar
Mino, H., Kawamori, A. & Ono, T.-A. (2000). Pulsed EPR studies of doublet signal and singlet-like signal in oriented Ca2+-depleted PS II membranes: location of the doublet signal center in PS II. Biochemistry 39, 1103411040.CrossRefGoogle ScholarPubMed
Möbius, K., Savitsky, A., Schnegg, A., Plato, M. & Fuchs, M. (2005). High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Physical Chemistry Chemical Physics 7, 1942.CrossRefGoogle ScholarPubMed
Nagahara, S., Murakami, A. & Makino, K. (1992). Spin-labeled oligonucleotides site specifically labeled at the internucleotide linkage. Separation of stereoisomeric probes and EPR spectroscopical detection of hybrid formation in solution. Nucleosides and Nucleotides 11, 889901.CrossRefGoogle Scholar
Narr, E., Godt, A. & Jeschke, G. (2002). Selective measurements of a nitroxide–nitroxide separation of 5 nm and a nitroxide-copper separation of 2·5 nm in a terpyridine-based copper(II) complex by pulse EPR spectroscopy. Angewandte Chemie International Edition 41, 39073910.3.0.CO;2-T>CrossRefGoogle Scholar
Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920930.CrossRefGoogle ScholarPubMed
Nordlund, P., Sjöberg, B.-M. & Eklund, H. (1990). Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345, 593598.CrossRefGoogle ScholarPubMed
Okonogi, T. M., Alley, S. C., Reese, A. W., Hopkins, P. B. & Robinson, B. H. (2000). Sequence-dependent dynamics in duplex DNA. Biophysical Journal 78, 25602571.CrossRefGoogle ScholarPubMed
Ostermeier, C., Harrenga, A., Ermler, U. & Michel, H. (1997). Structure at 2·7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody F-V fragment. Proceedings of the National Academy of Sciences USA 94, 1054710553.CrossRefGoogle Scholar
Páli, T., Finbow, M. E. & Marsh, D. (2006). A divalent-ion binding site on the 16-kDa proton channel from Nephrops norvegicus – revealed by EPR spectroscopy. Biochimica et Biophysica Acta 1758, 206212.CrossRefGoogle ScholarPubMed
Pannier, M., Veit, S., Godt, A., Jeschke, G. & Spiess, H. W. (2000). Dead-time free measurement of dipole-dipole interactions between electron spins. Journal of Magnetic Resonance 142, 331340.CrossRefGoogle ScholarPubMed
Park, S.-Y., Borbat, P. P., Gonzalez-Bonet, G., Bhatnagar, J., Pollard, A. M., Freed, J. H., Bilwes, A. M. & Crane, B. R. (2006). Reconstruction of the chemotaxis receptor-kinase assembly. Nature Structural & Molecular Biology 13, 400407.CrossRefGoogle ScholarPubMed
Perozo, E. (2002). New structural perspectives on K+ channel gating. Structure 10, 10271029.CrossRefGoogle ScholarPubMed
Perozo, E., Cortes, D. M. & Cuello, L. G. (1999). Structural rearrangements underlying K+-channel activation gating. Science 285, 7378.CrossRefGoogle ScholarPubMed
Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. (2002). Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942948.CrossRefGoogle ScholarPubMed
Persson, M., Harbridge, J. R., Hammerström, P., Mitri, R., Mårtensson, L.-G., Carlsson, U., Eaton, G. R. & Eaton, S. S. (2001). Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II. Biophysical Journal 80, 28862897.CrossRefGoogle ScholarPubMed
Pfannebecker, V., Klos, H., Hubrich, M., Volkmer, T., Heuer, A., Wiesner, U. & Spiess, H. W. (1996). Determination of end-to-end distances in oligomers by pulsed EPR. Journal of Physical Chemistry 100, 1342813432.CrossRefGoogle Scholar
Piton, N., Schiemann, O., Mu, Y., Stock, G., Prisner, T. F. & Engels, J. W. (2005). Synthesis of spin-labeled RNAS for long range distance measurements by PELDOR. Nucleosides, Nucleotides, and Nucleic Acids 24, 771775.CrossRefGoogle ScholarPubMed
Piton, N., Mu, Y., Stock, G., Prisner, T. F., Schiemann, O. & Engels, J. W. (2007). Base specific spin-labeling of RNA for structure determination. Nucleic Acids Research 35, 31283143.CrossRefGoogle ScholarPubMed
Polyhach, Y., Godt, A., Bauer, C. & Jeschke, G. (2007). Spin pair geometry revealed by high-field DEER in the presence of conformational distributions. Journal of Magnetic Resonance 185, 118129.CrossRefGoogle ScholarPubMed
Pornsuwan, S., Bird, G., Schafmeister, C. E. & Saxena, S. (2006). Flexibility and lengths of bis-peptide nanostructures by electron spin resonance. Journal of the American Chemical Society 128, 38763877.CrossRefGoogle ScholarPubMed
Prisner, T. F., Rohrer, M. & MacMillan, F. (2001). Pulsed EPR spectroscopy: biological applications. Annual Review of Physical Chemistry 52, 279313.CrossRefGoogle ScholarPubMed
Prisner, T. F. (1997). Pulsed high-frequency/high-field EPR. Advances in Magnetic and Optical Resonance 20, 245299.CrossRefGoogle Scholar
Prisner, T. F., Est, A. V. D., Bittl, R., Lubitz, W., Stehlik, D. & Möbius, K. (1995). Time-resolved W-band (95 GHz) EPR spectroscopy of Zn-substituted reaction centers of Rhodobacter sphaeroides R-26. Chemical Physics 194, 361370.CrossRefGoogle Scholar
Qin, P. Z., Butcher, S. E., Feigon, J. & Hubbell, W. L. (2001). Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. Biochemistry 40, 69296936.CrossRefGoogle ScholarPubMed
Qin, P. Z. & Dieckmann, T. (2004). Application of NMR and EPR methods to the study of RNA. Current Opinion in Structural Biology 14, 350359.CrossRefGoogle Scholar
Qin, P. Z., Hideg, K., Feigon, J. & Hubbell, W. L. (2003). Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42, 67726783.CrossRefGoogle ScholarPubMed
Rabenstein, M. D. & Shin, Y.-K. (1995). Determination of the distance between two spin labels attached to a macromolecule. Proceedings of the National Academy of Sciences USA 92, 82398243.CrossRefGoogle ScholarPubMed
Raitsimring, A., Crepeau, R. H. & Freed, J. H. (1995). Nuclear modulation effects in ‘2+1’ electron spin-echo correlation spectroscopy. Journal of Chemical Physics 102, 87468762.CrossRefGoogle Scholar
Raitsimring, A., Peisach, J., Lee, H. C. & Chen, X. (1992). Measurement of distance distributions between spin labels in spin-labeled hemoglobin using an electron spin echo methods. Journal of Physical Chemistry 96, 35263531.CrossRefGoogle Scholar
Rakowsky, M. H., More, K. M., Kulikov, A. V., Eaton, G. R. & Eaton, S. S. (1995). Time-domain electron paramagnetic resonance as a probe of electron–electron spin–spin interaction in spin-labeled low-spin iron porphyrins. Journal of the American Chemical Society 117, 20492057.CrossRefGoogle Scholar
Ramos, A. & Varani, G. (1998). A new method to detect long-range protein-RNA contacts: NMR detection of electron–proton relaxation induced by nitroxide spin-labeled RNA. Journal of the American Chemical Society 120, 1099210993.CrossRefGoogle Scholar
Rassat, A. & Rey, P. (1967). Nitroxides, XXIII. Préparation d'aminoacides radicalaires et de leurs sels complexes. Bullétin de la Société Chimique de France, 815817.Google Scholar
Robinson, B. H. & Drobny, G. P. (1995). Site-specific dynamics in DNA: theory. Annual Review of Biophysics and Biomolecular Structure 24, 523549.CrossRefGoogle ScholarPubMed
Robinson, B. H., Mailer, C. & Drobny, G. (1997). Site-specific dynamics in DNA: experiments. Annual Review of Biophysics and Biomolecular Structure 26, 629658.CrossRefGoogle ScholarPubMed
Sale, K., Faulon, J.-L., Gray, G. A., Schoeniger, J. S. & Young, M. M. (2004). Optimal bundling of transmembrane helices sparse distance constraints. Protein Science 13, 26132627.CrossRefGoogle ScholarPubMed
Sale, K., Song, L., Liu, Y.-S., Perozo, E. & Fajer, P. (2005). Explicit treatment of spin labels in modeling of distance constraints from dipolar EPR and DEER. Journal of the American Chemical Society 127, 93349335.CrossRefGoogle ScholarPubMed
Salikhov, K. M., Bock, C. H. & Stehlik, D. (1990). Time development of electron spin polarization in magnetically coupled, spin correlated pairs. Applied Magnetic Resonance 1, 195211.CrossRefGoogle Scholar
Salikhov, K. M., Dzuba, S. A. & Raitsimring, A. M. (1981). The theory of electron spin-echo signal decay resulting from dipole–dipole interactions between paramagnetic centers in solids. Journal of Magnetic Resonance 42, 255276.Google Scholar
Salikhov, K. M., Semenov, A. G. & Tsvetkov, Y. D. (1976). Electron Spin Echo and Its Applications. Nauka: Novosibirsk.Google Scholar
Salnikov, E. S., Erilov, D. A., Milov, A. D., Tsvetkov, Y. D., Peggion, C., Formaggio, F., Toniolo, C., Raap, J. & Dzuba, S. A. (2006). Location and aggregation of the spin-labeled peptide trichogin GA IV in a phospholipid membrane as revealed by pulsed EPR. Biophysical Journal 91, 15321540.CrossRefGoogle Scholar
Santabarbara, S., Kuprov, I., Fairclough, W. V., Purton, S., Hore, P. J., Heathcote, P. & Evans, M. C. W. (2005). Bidirectional electron transfer in photosystem I: determination of two distances between P700+ and A1 in spin-correlated radical pairs. Biochemistry 44, 21192128.CrossRefGoogle ScholarPubMed
Saxena, S. & Freed, J. H. (1996). Double quantum two-dimensional Fourier transform electron spin resonance: distance measurements. Chemical Physics Letters 251, 102110.CrossRefGoogle Scholar
Saxena, S. & Freed, J. H. (1997). Theory of double quantum two-dimensional electron spin resonance with application to distance measurements. Journal of Chemical Physics 107, 13171340.CrossRefGoogle Scholar
Schiemann, O., Piton, N., Mu, Y., Stock, G., Engels, J. W. & Prisner, T. F. (2004). A PELDOR-based nanometer distance ruler for oligonucleotides. Journal of the American Chemical Society 126, 57225729.CrossRefGoogle ScholarPubMed
Schiemann, O., Piton, N., Plackmeyer, J., Bode, B. E., Prisner, T. F. & Engels, J. W. (2007). Spin-Labeling of RNA/DNA with TPA and Nanometer Distance Measurements by PELDOR. Nature Protocols 2, 904923.CrossRefGoogle Scholar
Schiemann, O., Weber, A., Edwards, T. E., Prisner, T. F. & Sigurdsson, S. T. (2003). Nanometer distance measurements on RNA using PELDOR. Journal of the American Chemical Society 125, 34343435.CrossRefGoogle ScholarPubMed
Scholes, C. P., Janakiraman, R., Taylor, H. & King, T. E. (1984). Temperature dependence of the electron spin-lattice relaxation rate from pulsed EPR of CuA and heme a in cytochrome c oxidase. Biophysical Journal 45, 10271030.CrossRefGoogle ScholarPubMed
Schweiger, A. & Jeschke, G. (2001). Principles of Pulse Electron Paramagnetic Resonance. Oxford: Oxford University Press.CrossRefGoogle Scholar
Sharp, R., Lohr, L. & Miller, J. (2001). Paramagnetic NMR relaxation enhancement: recent advances in theory. Progress in Nuclear Magnetic Resonance Spectroscopy 38, 115158.CrossRefGoogle Scholar
Shigemori, K., Hara, H., Kawamori, A. & Akabori, K. (1998). Determination of distances from tyrosine D to QA and chlorophyll Z in photosystem II studied by ‘2+1’ pulsed EPR. Biochimica et Biophysica Acta 1363, 187198.CrossRefGoogle Scholar
Slichter, C. P. (1980). Principles of Magnetic Resonance. Berlin: Springer Verlag.Google Scholar
Snyder, S. W. & Thurnauer, M. C. (1993). Electron spin polarization in photosynthetic reaction centers. In The Photosynthetic Reaction Center, vol. 2 (eds. Deisenhofer, J. & Norris, J. R.), pp. 285330. New York: Academic Press.CrossRefGoogle Scholar
Spaltenstein, A., Robinson, B. H. & Hopkins, P. B. (1989). DNA structural data from a dynamics probe. The dynamic signatures of single-stranded, hairpin-looped and duplex forms of DNA are distinguishable. Journal of the American Chemical Society 111, 23032305.CrossRefGoogle Scholar
Sprinzl, M., Krämer, E. & Stehlik, D. (1974). On the structure of phenylalanine tRNA from yeast. Spin label studies. European Journal of Biochemistry 49, 595605.CrossRefGoogle ScholarPubMed
Stehlik, D. & Möbius, K. (1997). New EPR methods for investigating photoprocesses with paramagnetic intermediates. Annual Review of Physical Chemistry 48, 745784.CrossRefGoogle ScholarPubMed
Steigmiller, S., Börsch, M., Gräber, P. & Huber, M. (2005). Distances between the b-subunits in the tether domain of F0F1-ATP synthase from E. coli. Biochimica et Biophysica Acta 1708, 143153.CrossRefGoogle Scholar
Steinhoff, H.-J. (2004). Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein–protein and protein–oligonucleotide interaction. Biological Chemistry 385, 913920.CrossRefGoogle ScholarPubMed
Steinhoff, H.-J., Radziwill, N., Thevis, W., Lenz, V., Brandenburg, D., Antson, A., Dodson, G. & Wollmer, A. (1997). Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophysical Journal 73, 32873298.CrossRefGoogle ScholarPubMed
Strube, T., Schiemann, O., MacMillan, F., Prisner, T. F. & Engels, J. W. (2001). A new facial method for spin-labeling of oligonucleotides. Nucleosides, Nucleotides, and Nucleic Acids 20, 12711274.CrossRefGoogle Scholar
Stubbe, J., Nocera, D. G., Yee, C. S. & Chang, M. C. Y. (2003). Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer. Chemical Reviews 103, 21672201.CrossRefGoogle Scholar
Sun, J. J., Voss, J., Hubbell, W. L. & Kaback, H. R. (1999). Proximity between periplasmic loops in the lactose permease of Escherichia coli as determined by site-directed spin labeling. Biochemistry 38, 31003105.CrossRefGoogle ScholarPubMed
Thurnauer, M. C. & Clark, C. (1984). Electron spin echo envelope modulation of the transient EPR signals observed in photosynthetic algae and chloroplasts. Photochemistry and Photobiology 40, 381386.CrossRefGoogle Scholar
Timmel, C. R., Fursman, C. E., Hoff, A. J. & Hore, P. J. (1998). Spin-correlated radical pairs: microwave pulse effects on lifetimes, electron spin echo envelope modulations, and optimum conditions for detection by electron spin echo spectroscopy. Chemical Physics 226, 271283.CrossRefGoogle Scholar
Tjandra, N., Grzesiek, S. & Bax, A. (1996). Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. Journal of the American Chemical Society 118, 62646272.CrossRefGoogle Scholar
Tocilj, A., Schluenzen, F., Hansen, H. A., Bashan, A., Janell, D., Gluehmann, M., Bartels, H., Harms, J., Agmon, I., Franceschi, F. & Yonath, A. (1999). The small ribosomal subunit from Thermus thermophilus at 4·5 Å resolution: pattern fittings and the identification of a functional site. Proceedings of the National Academy of Sciences USA 96, 1425214257.CrossRefGoogle ScholarPubMed
Tolman, J. R., Flanagan, J. M., Kennedy, M. A. & Prestegard, J. H. (1995). Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proceedings of the National Academy of Sciences USA 92, 92799283.CrossRefGoogle ScholarPubMed
Tonaka, M., Kawamori, A., Hara, H. & Astashkin, A. V. (2000). Three dimensional structure of electron transfer components in photosystem II: ‘2+1’ ESE of chlorophyll Z and tyrosin D. Applied Magnetic Resonance 19, 141150.CrossRefGoogle Scholar
Ubbink, M., Worrall, J. A. R., Canters, G. W., Groenen, E. J. J. & Huber, M. (2002). Paramagnetic resonance of biological metal centers. Annual Review of Biophysics and Biomolecular Structure 31, 393422.CrossRefGoogle ScholarPubMed
Un, S., Brunel, L.-C., Brill, T. M., Zimmermann, J.-L. & Rutherford, A. W. (1994). Angular orientation of the stable tyrosyl radical within photosystem II by high-field 245 GHz electron paramagnetic resonance. Proceedings of the National Academy of Sciences USA 91, 52625266.CrossRefGoogle ScholarPubMed
Verma, S. & Eckstein, F. (1998). Modified oligonucleotides: synthesis and strategy for users. Annual Reviews of Biochemistry 67, 99134.CrossRefGoogle ScholarPubMed
Voss, J., Hubbell, W. L. & Kaback, H. R. (1995a). Distance determination in proteins using designed metal ion binding sites and site-directed sping labeling: application to the lactose permease of Escherichia coli. Proceedings of the National Academy of Sciences USA 92, 1230012303.CrossRefGoogle Scholar
Voss, J., Salwinski, L., Kaback, H. R. & Hubbell, W. L. (1995b). A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme. Proceedings of the National Academy of Sciences USA 92, 1229512299.CrossRefGoogle ScholarPubMed
Voss, J., Hubbell, W. L. & Kaback, H. R. (1998). Helix packing in the lactose permease determined by metal-nitroxide interaction. Biochemistry 37, 211216.CrossRefGoogle ScholarPubMed
Weber, A., Schiemann, O., Bode, B. & Prisner, T. (2002). PELDOR at S- and X-band frequencies and the separation of exchange coupling form dipolar coupling. Journal of Magnetic Resonance 157, 277285.CrossRefGoogle Scholar
Wegener, A.-A., Klare, J. P., Engelhard, M. & Steinhoff, H.-J. (2001). Structural insights into the early steps of receptor-transducer signal transfer in archael phototaxis. European Molecular Biology Journal 20, 53125319.Google Scholar
Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. New York: John Wiley & Sons.CrossRefGoogle Scholar
Xu, Q., Ellena, J. F., Kim, M. & Cafiso, D. S. (2006). Substrate-dependent unfolding of the energy coupling motif of a membrane transport protein determined by double electron-electron resonance. Biochemistry 45, 1084710854.CrossRefGoogle ScholarPubMed
Yang, K., Farrens, D. L., Altenbach, C., Farahbakhsh, Z. T., Hubbell, W. L. & Khorana, H. G. (1996). Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels. Biochemistry 35, 1404014046.CrossRefGoogle Scholar
Yoshii, T., Hara, H., Kawamori, A., Akabori, K., Iwaki, M. & Itoh, S. (1999a). ESEEM study of the location of spin polarized chlorophyll-quinone radical pair in membrane-oriented spinach photosystem I and II complexes. Applied Magnetic Resonance 16, 565580.CrossRefGoogle Scholar
Yoshii, T., Kawamori, A., Tonaka, M. & Akabori, K. (1999b). Relative positions of electron transfer components in photosystem II studied by ‘2+1’ pulsed electron paramagnetic resonance: YD and QA. Biochimica et Biophysica Acta 1413, 4349.CrossRefGoogle Scholar
Yusupov, M., Yusupova, G., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H. & Noller, H. F. (2001). Crystal structure of the ribosome at 5·5 Å resolution. Science 292, 883896.CrossRefGoogle ScholarPubMed
Zech, S. G., Kurreck, J., Eckert, H.-J., Renger, G., Lubitz, W. & Bittl, R. (1997). Pulsed EPR measurement of the distance between P680+● and QA−● in photosystem II. Federation of European Biochemical Societies Letters 414, 454456.Google ScholarPubMed
Zech, S. G., Kurreck, J., Renger, G., Lubitz, W. & Bittl, R. (1999). Determination of the distance between YZox● and QA−● in photosystem II by pulsed EPR spectroscopy on light-induced radical pairs. Federation of European Biochemical Societies Letters 442, 7982.CrossRefGoogle ScholarPubMed
Zhidomirov, G. M. & Salikhov, K. M. (1969). Contribution to the theory of spectral diffusion in magnetically diluted solids. Soviet Physics JETP 29, 1037–224.Google Scholar
Zhou, Z., DeSensi, S. C., Stein, R. A., Brandond, S., Dixit, M., McArdle, E. J., Warren, E. M., Kroh, H. K., Song, L., Cobb, C. E., Hustedt, E. J. & Beth, A. H. (2005). Solution structure of the cytoplasmic domain of erythrocyte membrane band 3 determined by site-directed spin labeling. Biochemistry 44, 1511515128.CrossRefGoogle ScholarPubMed
Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauß, N., Saenger, W. & Orth, P. (2001). Crystal structure of photosystem II from Synechococcus elongatus at 3·8 Å resolution. Nature 409, 739743.CrossRefGoogle ScholarPubMed
Zwanenburg, G. & Hore, P. J. (1993). EPR of spin-correlated radical pairs. Analytical treatment of selective excitation including zero-quantum coherence. Chemical Physics Letters 203, 6574.CrossRefGoogle Scholar