Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-27T09:52:23.686Z Has data issue: false hasContentIssue false

The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence

Published online by Cambridge University Press:  26 July 2007

Rex E. Jung
Affiliation:
Departments of Neurology and Psychology, University of New Mexico, and The MIND Research Network, Albuquerque, NM 87106rjung@themindinstitute.orgwww.themindinstitute.orgwww.positiveneuroscience.com
Richard J. Haier
Affiliation:
School of Medicine, Med Sc I; C237, University of California, Irvine, CA 92697-4475rjhaier@uci.eduhttp://www.ucihs.uci.edu/pediatrics/faculty/neurology/haier/haier.html

Abstract

“Is there a biology of intelligence which is characteristic of the normal human nervous system?” Here we review 37 modern neuroimaging studies in an attempt to address this question posed by Halstead (1947) as he and other icons of the last century endeavored to understand how brain and behavior are linked through the expression of intelligence and reason. Reviewing studies from functional (i.e., functional magnetic resonance imaging, positron emission tomography) and structural (i.e., magnetic resonance spectroscopy, diffusion tensor imaging, voxel-based morphometry) neuroimaging paradigms, we report a striking consensus suggesting that variations in a distributed network predict individual differences found on intelligence and reasoning tasks. We describe this network as the Parieto-Frontal Integration Theory (P-FIT). The P-FIT model includes, by Brodmann areas (BAs): the dorsolateral prefrontal cortex (BAs 6, 9, 10, 45, 46, 47), the inferior (BAs 39, 40) and superior (BA 7) parietal lobule, the anterior cingulate (BA 32), and regions within the temporal (BAs 21, 37) and occipital (BAs 18, 19) lobes. White matter regions (i.e., arcuate fasciculus) are also implicated. The P-FIT is examined in light of findings from human lesion studies, including missile wounds, frontal lobotomy/leukotomy, temporal lobectomy, and lesions resulting in damage to the language network (e.g., aphasia), as well as findings from imaging research identifying brain regions under significant genetic control. Overall, we conclude that modern neuroimaging techniques are beginning to articulate a biology of intelligence. We propose that the P-FIT provides a parsimonious account for many of the empirical observations, to date, which relate individual differences in intelligence test scores to variations in brain structure and function. Moreover, the model provides a framework for testing new hypotheses in future experimental designs.

Type
Main Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboitiz, F. (1992) The origin of the mammalian brain as a case of evolutionary irreversibility. Medical Hypotheses 38(4):301304.CrossRefGoogle ScholarPubMed
Allen, J. S., Bruss, J., Brown, C. K. & Damasio, H. (2005) Methods for studying the aging brain: Volumetric analyses versus VBM. Neurobiology of Aging 26(9):1275–78.CrossRefGoogle Scholar
Alpherts, W. C., Vermeulen, J., Hendriks, M. P., Franken, M. L., van Rijen, P.C., Lopes da Silva, F. H. & van Veelen, C. W. (2004) Long-term effects of temporal lobectomy on intelligence. Neurology 62(4):607–11.CrossRefGoogle ScholarPubMed
Andreasen, N. C., Flaum, M., SwayzeV., II V., II, O'Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J. & Yuh, W. T. (1993) Intelligence and brain structure in normal individuals. American Journal of Psychiatry 150(1):130–34.Google ScholarPubMed
Archibald, Y. M., Wepman, J. M. & Jones, L. V. (1967) Performance on nonverbal cognitive tests following unilateral cortical injury to the right and left hemisphere. Journal of Nervous and Mental Disease 145(1):2536.CrossRefGoogle Scholar
Arrigoni, G. & De Renzi, E. (1964) Constructional apraxia and hemispheric locus of lesion. Cortex 1:170–97.CrossRefGoogle Scholar
Arthurs, O. J. & Boniface, S. (2002) How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosciences 25(1):2731.CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K. J. (1997) Multimodal image coregistration and partitioning – A unified framework. NeuroImage 6(3):209–17.CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K. J. (2000) Voxel-based morphometry – The methods. NeuroImage 11(6, Pt 1): 805–21.CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K. J. (2001) Why voxel-based morphometry should be used. NeuroImage 14(6):1238–43.CrossRefGoogle ScholarPubMed
Atherton, M., Zhuang, J., Bart, W. M., Hu, X. & He, S. (2003) A functional MRI study of high-level cognition. I. The game of chess. Cognitive Brain Research 16(1):2631.CrossRefGoogle ScholarPubMed
Balish, M. & Muratore, R. (1990) The inverse problem in electroencephalography and magnetoencephalography. Advances in Neurology 54:7988.Google ScholarPubMed
Barker, P. B. (2001) N-acetyl aspartate – a neuronal marker? Annals of Neurology 49(4):423–24.CrossRefGoogle ScholarPubMed
Bartzokis, G., Cummings, J. L., Sultzer, D., Henderson, V. W., Nuechterlein, K. H. & Mintz, J. (2003) White matter structural integrity in healthy aging adults and patients with Alzheimer disease: A magnetic resonance imaging study. Archives of Neurology 60(3):393–98.CrossRefGoogle ScholarPubMed
Basso, A., Capitani, E., Luzzatti, C. & Spinnler, H. (1981) Intelligence and left hemisphere disease. The role of aphasia, apraxia and size of lesion. Brain 104(Pt 4):721–34.CrossRefGoogle ScholarPubMed
Basso, A., De Renzi, E., Faglioni, P., Scotti, G. & Spinnler, H. (1973) Neuropsychological evidence for the existence of cerebral areas critical to the performance of intelligence tasks. Brain 96(4):715–28.CrossRefGoogle Scholar
Binet, A. (1905) The development of intelligence in children. L'Année Psychologique 12:191244.Google Scholar
Bishop, G. H. & Smith, J. M. (1964) The size of nerve fibers supplying cerebral cortex. Experimental Neurology 59:483501.CrossRefGoogle Scholar
Blair, C. (2006) How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences 29(2):109–25.CrossRefGoogle ScholarPubMed
Boller, F. & Vignolo, L. A. (1966) Latent sensory aphasia in hemisphere-damaged patients: An experimental study with the Token Test. Brain 89:815–30.CrossRefGoogle ScholarPubMed
Bookstein, F. L. (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. NeuroImage 14(6):1454–62.CrossRefGoogle Scholar
Bottomley, P. A., Edelstein, W. A., Foster, T. H. & Adams, W. A. (1985) In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: A window to metabolism? Proceedings of the National Academy of Sciences USA 82(7):2148–52.CrossRefGoogle ScholarPubMed
Broca, M. P. (1861) Remarques sur le siège de la faculté du langage articulé, suivies d'une observation d'aphemie (Perte de la Parole). Bulletin de la Société Anatomique Paris 36:330–57.Google Scholar
Brodmann, K. (1912) Neue Ergebnisse uber die vergleichende histologische Lokalisation der Grosshirnrinde mit besonderer Berucksichtigung des Stirnhirns. Anatomischer Anzeiger (Suppl.) 41:157216.Google Scholar
Burrell, B. (2005) Postcards from the brain museum: The improbable search for meaning in the matter of famous minds. Broadway Books.Google Scholar
Cabeza, R. & Nyberg, L. (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience 12(1):147.CrossRefGoogle Scholar
Chabris, C. F. (2006) Cognitive and neurobiological mechanisms of the law of general intelligence. In: Integrating the mind, ed. Roberts, M. J.. Psychology Press.Google Scholar
Chen, X. C., Zhang, D., Zhang, X. C., Li, Z. H., Meng, X. M., He, S. & Hu, X. P. (2003) A functional MRI study of high-level cognition – II. The game of GO. Cognitive Brain Research 16(1):3237.CrossRefGoogle ScholarPubMed
Cochrane, N. & Kljajic, I. (1979) The effects on intellectual functioning of open prefrontal leucotomy. Medical Journal of Australia 1(7):258–60.CrossRefGoogle ScholarPubMed
Colom, R., Abad, F. J., Garcia, L. F. & Juan-Espinosa, M. (2002) Education, Wechsler's Full Scale IQ, and g. Intelligence 30(5):449–62.CrossRefGoogle Scholar
Colom, R., Jung, R. E. & Haier, R. J. (2006a) Distributed brain sites for the g-factor of intelligence. NeuroImage 31(3):1359–65.CrossRefGoogle ScholarPubMed
Colom, R., Jung, R. E. & Haier, R. J. (2006b) Finding the g-factor in brain structure using the method of correlated vectors. Intelligence 34(6):561–70.CrossRefGoogle Scholar
Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M. & Kyllonen, P. C. (2004) Working memory is (almost) perfectly predicted by g. Intelligence 32(3):277–96.CrossRefGoogle Scholar
Costa, L. D., Vaughan, G. Jr., Horwitz, M. & Ritter, W. (1969) Patterns of behavioral deficit associated with visual spatial neglect. Cortex 5(3):242–63.CrossRefGoogle ScholarPubMed
Cumming, S., Hay, P., Lee, T. & Sachdev, P. (1995) Neuropsychological outcome from psychosurgery for obsessive-compulsive disorder. Australian and New Zealand Journal of Psychiatry 29(2):293–98.CrossRefGoogle ScholarPubMed
Darwin, C. R. (1871) The descent of man and selection in relation to sex. John Murray.Google Scholar
Davatzikos, C. (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1):1720.CrossRefGoogle ScholarPubMed
Deary, I. J. & Caryl, P. G. (1997) Neuroscience and human intelligence differences. Trends in Neurosciences 20(8):365–71.CrossRefGoogle ScholarPubMed
De Renzi, E. & Faglioni, P. (1965) The comparative efficiency of intelligence and vigilance tests in detecting hemispheric cerebral damage. Cortex 1:410–29.CrossRefGoogle Scholar
Detterman, D. K. (2000) General intelligence and the definition of phenotypes. Novartis Foundation Symposium 233:136–34; discussion 144–48.CrossRefGoogle ScholarPubMed
Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Buchel, C. & May, A. (2006) Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience 26(23):6314–17.CrossRefGoogle ScholarPubMed
Duncan, J. (2005) Frontal lobe function and general intelligence: Why it matters. Cortex 41(2):215–27.CrossRefGoogle ScholarPubMed
Duncan, J., Burgess, P. & Emslie, H. (1995) Fluid intelligence after frontal lobe lesions. Neuropsychologia 33(3):261–68.CrossRefGoogle ScholarPubMed
Duncan, J. & Owen, A. M. (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences 23(10):475–83.CrossRefGoogle ScholarPubMed
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N. & Emslie, H. (2000) A neural basis for general intelligence. Science 289(5478):457–60.CrossRefGoogle ScholarPubMed
Esposito, G., Kirkby, B. S., Van Horn, J. D., Ellmore, T. M. & Berman, K. F. (1999) Context-dependent, neural system-specific neurophysiological concomitants of ageing: Mapping PET correlates during cognitive activation. Brain 122(Pt 5):963–79.CrossRefGoogle ScholarPubMed
Evans, P. D., Gilbert, S. L., Mekel-Bobrov, N., Vallender, E. J., Anderson, J. R., Vaez-Azizi, L. M., Tishkoff, S. A., Hudson, R. R. & Lahn, B. T. (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309(5741):1717–20.CrossRefGoogle ScholarPubMed
Fangmeier, T., Knauff, M., Ruff, C. C. & Sloutsky, V. (2006) fMRI evidence for a three-stage model of deductive reasoning. Journal of Cognitive Neuroscience 18(3):320–34.CrossRefGoogle ScholarPubMed
Fellows, L. K., Heberlein, A. S., Morales, D. A., Shivde, G., Waller, S. & Wu, D. H. (2005) Method matters: An empirical study of impact in cognitive neuroscience. Journal of Cognitive Neuroscience 17(6):850–58.CrossRefGoogle ScholarPubMed
Ferguson, K. J., MacLullich, A. M., Marshall, I., Deary, I. J., Starr, J. M., Seckl, J. R. & Wardlaw, J. M. (2002) Magnetic resonance spectroscopy and cognitive function in healthy elderly men. Brain 125(Pt 12):2743–49.CrossRefGoogle ScholarPubMed
Flashman, L. A., Andreasen, N. C., Flaum, M. & Swayze, V. W. (1997) Intelligence and regional brain volumes in normal controls. Intelligence 25(3):149–60.CrossRefGoogle Scholar
Flourens, M. J. P. (1824) Recherches experimentales sur les proprietes et les fonctions du systeme nerveux dans les animaux vertibres. Crevot.Google Scholar
Frangou, S., Chitins, X. & Williams, S. C. R. (2004) Mapping IQ and gray matter density in healthy young subjects. NeuroImage 23:800805.CrossRefGoogle Scholar
Freeman, W. & Watts, J. C. (1942) Psychosurgery: Intelligence, emotion, and social behavior following prefrontal lobotomy for mental disorders. Charles C. Thomas.CrossRefGoogle Scholar
Friede, R. L. & Samorajski, T. (1967) Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. Journal of Comparative Neurology 130(3):223–31.CrossRefGoogle ScholarPubMed
Fulton, J. F. (1928) Observations upon the vascularity of the human occipital lobe during visual activity. Brain 51:310–20.CrossRefGoogle Scholar
Gainotti, G., D'Erme, P., Villa, G. & Caltagirone, C. (1986) Focal brain lesions and intelligence: A study with a new version of Raven's Coloured Matrices. Journal of Clinical and Experimental Neuropsychology 8(1):3750.CrossRefGoogle Scholar
Galaburda, A. M. (1999) Albert Einstein's brain. Lancet 354:1821.CrossRefGoogle ScholarPubMed
Gall, F. J. (1825) Sur les fonctions du cerveau et sur celles de chacune de ses parties. Bailliere.Google Scholar
Galton, F. (1869) Hereditary genius. Macmillan.CrossRefGoogle Scholar
Gardner, H. (1993a) Creating minds. Basic Books.Google Scholar
Gasparovic, C., Song, T., Devier, D., Bockholt, H. J., Caprihan, A., Mullins, P. G., Posse, S., Jung, R. E. & Morrison, L. (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magnetic Resonance in Medicine 55(6):1219–26.CrossRefGoogle ScholarPubMed
Geake, J. G. & Hansen, P. C. (2005) Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage 26(2):555–64.CrossRefGoogle ScholarPubMed
Geschwind, N. (1965) Disconnexion syndromes in animals and man. I. Brain 88(2):237–94.CrossRefGoogle ScholarPubMed
Geschwind, N. & Levitsky, W. (1968) Human brain: Left-right asymmetries in temporal speech region. Science 161:186–87.CrossRefGoogle ScholarPubMed
Ghatan, P. H., Hsieh, J. C., Wirsen-Meurling, A., Wredling, R., Eriksson, L., Stone-Elander, S., Levander, S. & Ingvar, M. (1995) Brain activation induced by the perceptual maze test: A PET study of cognitive performance. NeuroImage 2(2):112–24.CrossRefGoogle ScholarPubMed
Gignac, G., Vernon, P. A. & Wicket, J. C. (2003) Factors influencing the relationship between brain size and intelligence. In: The scientific study of general intelligence, ed. Nyborg, H., pp. 93106. Pergamon Press.CrossRefGoogle Scholar
Giuliani, N. R., Calhoun, V. D., Pearlson, G. D., Francis, A. & Buchanan, R. W. (2005) Voxel-based morphometry versus region of interest: A comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research 74(2–3):135–47.CrossRefGoogle ScholarPubMed
Goel, V. & Dolan, R. J. (2001) Functional neuroanatomy of three-term relational reasoning. Neuropsychologia 39(9):901909.CrossRefGoogle ScholarPubMed
Goel, V. & Dolan, R. J. (2004) Differential involvement of left prefrontal cortex in inductive and deductive reasoning. Cognition 93(3):B109–21.CrossRefGoogle ScholarPubMed
Goel, V., Gold, B., Kapur, S. & Houle, S. (1997) The seats of reason? An imaging study of deductive and inductive reasoning. NeuroReport 8(5):1305–10.CrossRefGoogle ScholarPubMed
Goel, V., Gold, B., Kapur, S. & Houle, S. (1998) Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience 10(3):293302.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1987) Circuitry of the frontal association cortex and its relevance to dementia. Archives of Gerontology and Geriatrics 6(3):299309.CrossRefGoogle ScholarPubMed
Goldstein, K. (1942) After-effects of brain injuries in war. Heinemann.Google Scholar
Gong, Q. Y., Sluming, V., Mayes, A., Keller, S., Barrick, T., Cezayirli, E. & Roberts, N. (2005) Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults. NeuroImage 25(4):1175–86.CrossRefGoogle ScholarPubMed
Good, C. D., Scahill, R. I., Fox, N. C., Ashburner, J., Friston, K. J., Chan, D., Crum, W. R., Rossor, M. N. & Frackowiak, R. S. (2002) Automatic differentiation of anatomical patterns in the human brain: Validation with studies of degenerative dementias. NeuroImage 17(1):2946.CrossRefGoogle ScholarPubMed
Grabner, R. H., Neubauer, A. C. & Stern, E. (2006) Superior performance and neural efficiency: The impact of intelligence and expertise. Brain Research Bulletin 69(4):422–39.CrossRefGoogle ScholarPubMed
Gray, J. R., Chabris, C. F. & Braver, T. S. (2003) Neural mechanisms of general fluid intelligence. Nature Neuroscience 6(3):316–22.CrossRefGoogle ScholarPubMed
Gray, J. R. & Thompson, P. M. (2004) Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience 5(6):471–82.CrossRefGoogle ScholarPubMed
Gur, R. C., Gur, R. E., Obrist, W. D., Hungerbuhler, J. P., Younkin, D., Rosen, A. D., Skolnick, B. E. & Reivich, M. (1982) Sex and handedness differences in cerebral blood flow during rest and cognitive activity. Science 217(4560):659–61.CrossRefGoogle ScholarPubMed
Gur, R. C., Gur, R. E., Obrist, W. D., Skolnick, B. E. & Reivich, M. (1987) Age and regional cerebral blood flow at rest and during cognitive activity. Archives of General Psychiatry 44(7):617–21.CrossRefGoogle ScholarPubMed
Gur, R. C., Gur, R. E., Skolnick, B. E., Resnick, S. M., Silver, F. L., Chawluk, J., Muenz, L., Obrist, W. D. & Reivich, M. (1988) Effects of task difficulty on regional cerebral blood flow: Relationships with anxiety and performance. Psychophysiology 25(4):392–99.CrossRefGoogle ScholarPubMed
Gur, R. C., Ragland, J. D., Resnick, S. M., Skolnick, B. E., Jaggi, J., Muenz, L. & Gur, R. E. (1994) Lateralized increases in cerebral blood flow during performance of verbal and spatial tasks: Relationship with performance level. Brain and Cognition 24(2):244–58.CrossRefGoogle ScholarPubMed
Gur, R. C. & Reivich, M. (1980) Cognitive task effects on hemispheric blood flow in humans: Evidence for individual differences in hemispheric activation. Brain and Language 9(1):7892.CrossRefGoogle ScholarPubMed
Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P. & Gur, R. E. (1999) Sex differences in brain grey and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience 19(10):4065–72.CrossRefGoogle ScholarPubMed
Haier, R. J. (1993a) Biological and psychometric intelligence: Testing an animal model in humans with PET. In: Current topics in human intelligence, vol. 3, ed. Detterman, D. K., pp. 157–70. Elsevier.Google Scholar
Haier, R. J. (1993b) Cerebral glucose metabolism and intelligence. Biological approaches to the study of human intelligence, ed. Vernon, P. A.. Ablex.Google Scholar
Haier, R. J. (2003) Positron emission tomography studies of intelligence: From psychometrics to neurobiology. In: The scientific study of general intelligence: Tribute to Arthur R. Jensen, ed. Nyborg, H., pp. 4151. Elsevier Science.CrossRefGoogle Scholar
Haier, R. J. & Benbow, C. P. (1995) Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology 11(4):405–15.CrossRefGoogle Scholar
Haier, R. J., Chueh, D., Touchette, P., Lott, I., Buchsbaum, M. S., Macmillan, D., Sandman, C., Lacasse, L. & Sosa, E. (1995) Brain size and cerebral glucose metabolic rate in nonspecific mental retardation and Down syndrome. Intelligence 20(2):191210.CrossRefGoogle Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2004) Structural brain variation and general intelligence. NeuroImage 23(1):425–33.CrossRefGoogle ScholarPubMed
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. (2005) The neuroanatomy of general intelligence: Sex matters. NeuroImage 25(1): 320–27.CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S. & Buchsbaum, M. S. (1992a) Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Research 570(1–2):134–43.CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. V., Tang, C., Abel, L. & Buchsbaum, M. S. (1992b) Intelligence and changes in regional cerebral glucose metabolic-rate following learning. Intelligence 16(3–4):415–26.CrossRefGoogle Scholar
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., Browning, H. L. & Buchsbaum, M. S. (1988) Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12(2):199217.CrossRefGoogle Scholar
Haier, R. J., Thompson, P. M., Prabhakaran, V., Gray, J. R., Neubauer, A., Stough, C. & Jung, R. E. (2003a) Brain imaging studies of intelligence. Papers presented at the International Society for Intelligence Research Annual Meeting, Newport Beach, CA, December 2003.Google Scholar
Haier, R. J., White, N. S. & Alkire, M. T. (2003b) Individual differences in general intelligence correlate with brain function during non-reasoning tasks. Intelligence 31(5):429–41.CrossRefGoogle Scholar
Hale, S., Myerson, J. & Wagstaff, D. (1987) General slowing of nonverbal information-processing – Evidence for a power law. Journal of Gerontology 42(2):131–36.CrossRefGoogle ScholarPubMed
Halstead, W. C. (1947) Brain and intelligence. University of Chicago Press.Google Scholar
Harlow, J. M. (1848) Passage of an iron rod through the head. Boston Medical and Surgical Journal 39:389–93.Google Scholar
Harlow, J. M. (1868) Recovery from the passage of an iron bar through the head. Bulletin of the Massachusetts Medical Society 1:320.Google Scholar
Haug, H. (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). American Journal of Anatomy 180:126–42.CrossRefGoogle Scholar
Head, H. (1926) Aphasia and kindred disorders of speech. Cambridge University Press.Google Scholar
Helmstaedter, C. & Lendt, M. (2001) Neuropsychological outcome of temporal and extratemporal lobe resections in children. In: Neuropsychology of childhood epilepsy, ed. Jambaque, I., Lassonde, M. & Dulac, O., pp. 215–27. Kluwer Academic/Plenum Press.CrossRefGoogle Scholar
Hines, T. (1998) Further on Einstein's brain. Experimental Neurology 150:343–44.CrossRefGoogle ScholarPubMed
Holland, S. K., Plante, E., Weber Byars, A., Strawsburg, R. H., Schmithorst, V. J. & Ball, W. S. Jr. (2001) Normal fMRI brain activation patterns in children performing a verb generation task. NeuroImage 14(4):837–43.CrossRefGoogle ScholarPubMed
Huang, M. X., Lee, R. R., Miller, G. A., Thoma, R. J., Hanlon, F. M., Paulson, K. M., Martin, K., Harrington, D. L., Weisend, M. P., Edgar, J. C. & Canive, J. M. (2005) A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency. NeuroImage 28(1):99114.CrossRefGoogle ScholarPubMed
Hunt, T. (1940) Psychological testing of psychiatric patients undergoing prefrontal lobotomy. Psychological Bulletin 37:566.Google Scholar
Hutton, E. L. (1942) Investigation of personaltiy in paitents treated by prefrontal leukotomy. Journal of Mental Science 88: 275–81.CrossRefGoogle Scholar
Ingvar, D. H. & Risberg, J. (1967) Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Experimental Brain Research 3(3):195211.CrossRefGoogle ScholarPubMed
Jackson, A. P., Eastwood, H., Bell, S. M., Adu, J., Toomes, C., Carr, I. M., Roberts, E., Hampshire, D. J., Crow, Y. J., Mighell, A. J., Karbani, G., Jafri, H., Rashid, Y., Mueller, R. F., Markham, A. F. & Woods, C. G. (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. American Journal of Human Genetics 71(1): 3642.CrossRefGoogle ScholarPubMed
Jackson, J. H. (1932) Selected writings of John Hughlings Jackson. Hodder & Stoughton.Google Scholar
James, W. (1890) Principles of psychology. Henry Holt.Google Scholar
Jensen, A. R. (1998) The g factor: The science of mental ability. Praeger.Google Scholar
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C. & Sibbitt, W. L. Jr. (1999) Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proceedings of the Royal Society of London; Series B; Biological Sciences 266(1426):1375–79.CrossRefGoogle ScholarPubMed
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., Sibbitt, W. L. & Brooks, W. M. (2005) Sex differences in N-acetylaspartate correlates of general intelligence: An 1H-MRS study of normal human brain. NeuroImage 26(3):965–72.CrossRefGoogle ScholarPubMed
Kandel, E. R., Schwartz, J. H. & Jessell, T. M. (2000) Principles of neural science. McGraw-Hill.Google Scholar
Kane, M. J. & Engle, R. W. (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin and Review 9(4):637–71.CrossRefGoogle ScholarPubMed
Kertesz, A. & McCabe, P. (1975) Intelligence and aphasia: Performance of aphasics on Raven's coloured progressive matrices (RCPM). Brain and Language 2(4):387–95.CrossRefGoogle ScholarPubMed
Kisker, G. W. (1943) Perceptual-motor patterns following bilateral prefrontal lobotomy. Archives of Neurology and Psychiatry 50:691–96.CrossRefGoogle Scholar
Kleist, K. (1934) Gehirn-Pathologie vornehmlich auf Grund der Kriegserfahrungen. Barth.Google Scholar
Knauff, M., Fangmeier, T., Ruff, C. C. & Johnson-Laird, P. N. (2003) Reasoning, models, and images: Behavioral measures and cortical activity. Journal of Cognitive Neuroscience 15(4):559–73.CrossRefGoogle ScholarPubMed
Knauff, M., Mulack, T., Kassubek, J., Salih, H. R. & Greenlee, M. W. (2002) Spatial imagery in deductive reasoning: A functional MRI study. Brain Research: Cognitive Brain Research 13(2):203–12.Google ScholarPubMed
Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S. & Holyoak, K. J. (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: A parametric study of relational complexity. Cerebral Cortex 12(5):477–85.CrossRefGoogle ScholarPubMed
Kyllonen, P. C. & Christal, R. E. (1990) Reasoning ability is (little more than) working-memory capacity. Intelligence 14(4):389433.CrossRefGoogle Scholar
Lah, S. (2004) Neuropsychological outcome following focal cortical removal for intractable epilepsy in children. Epilepsy and Behavior 5(6):804–17.CrossRefGoogle ScholarPubMed
Larson, G. E., Haier, R. J., LaCasse, L. & Hazen, K. (1995) Evaluation of a “mental effort” hypothesis for correlations between cortical metabolism and intelligence. Intelligence 21(3):267–78.CrossRefGoogle Scholar
Lashley, K. S. (1929) Brain mechanisms and intelligence. University of Chicago Press.Google Scholar
Lassen, N. A., Hoedt-Rasmussen, K., Lindbjerg, I., Pedersen, F. & Munck, O. (1963a) Muscle blood flow determined by use of xenon 133. Scandinavian Journal of Clinical and Laboratory Investigation 15:SUPPL 76:61.Google ScholarPubMed
Lassen, N. A., Hoedt-Rasmussen, K., Sorensen, S. C., Skinhoj, E., Cronquist, S., Bodforss, B. & Ingvar, D. H. (1963b) Regional cerebral blood flow in man determined by krypton. Neurology 13:719–27.CrossRefGoogle ScholarPubMed
Lee, J. Y., Lyoo, I. K., Kim, S. U., Jang, H. S., Lee, D. W., Jeon, H. J., Park, S. C. & Cho, M. J. (2005) Intellect declines in healthy elderly subjects and cerebellum. Psychiatry and Clinical Neurosciences 59(1):4551.CrossRefGoogle ScholarPubMed
Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S. & Kim, K. (2006) Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage 29(2):578–86.CrossRefGoogle ScholarPubMed
Lewis, D. V., Thompson, R. J. & Santos, C. C. (1996) Outcome of temporal lobectomy in adolescents. Journal of Epilepsy 9:198205.CrossRefGoogle Scholar
Lindenberger, U., Mayr, U. & Kliegl, R. (1993) Speed and intelligence in old age. Psychology and Aging 8(2):207–20.CrossRefGoogle ScholarPubMed
Logothetis, N. K. & Wandell, B. A. (2004) Interpreting the BOLD signal. Annual Review of Physiology 66:735–69.CrossRefGoogle ScholarPubMed
Luo, Q., Perry, C., Peng, D., Jin, Z., Xu, D., Ding, G. & Xu, S. (2003) The neural substrate of analogical reasoning: An fMRI study. Brain Research: Cognitive Brain Research 17(3):527–34.Google ScholarPubMed
Luria, A. R. (1963) Restoration of function after brain injury. Pergamon Press.Google Scholar
Luria, A. R. (1973) Higher cortical functioning in man. Basic Books.Google Scholar
Marino, L. (2002) Convergence in complex cognitive abilities in cetaceans and primates. Brain Behavior and Evolution 59:2132.CrossRefGoogle ScholarPubMed
Mathews, M. A. (1968) The electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous system. Anatomical Record 161(3): 337–45.CrossRefGoogle Scholar
McDaniel, M. A. (2005) Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33:337–46.CrossRefGoogle Scholar
Mekel-Bobrov, N., Gilbert, S. L., Evans, P. D., Vallender, E. J., Anderson, J. R., Hudson, R. R., Tishkoff, S. A. & Lahn, B. T. (2005) Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309(5741):1720–22.CrossRefGoogle ScholarPubMed
Miller, E. M. (1994) Intelligence and brain myelination – A hypothesis. Personality and Individual Differences 17(6):803–32.CrossRefGoogle Scholar
Miranda, C. & Smith, M. L. (2001) Predictors of intelligence after temporal lobectomy in children with epilepsy. Epilepsy and Behavior 2(1):1319.CrossRefGoogle ScholarPubMed
Mozley, L. H., Gur, R. C., Mozley, P. D. & Gur, R. E. (2001) Striatal dopamine transporters and cognitive functioning in healthy men and women. American Journal of Psychiatry 158(9):1492–99.CrossRefGoogle ScholarPubMed
Naghavi, H. R. & Nyberg, L. (2005) Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition 14(2):390425.CrossRefGoogle ScholarPubMed
Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J. & Urbina, S. (1996) Intelligence: Knowns and unknowns. American Psychologist 51(2):77101.CrossRefGoogle Scholar
Neubauer, A. C. & Fink, A. (2003) Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences 35(4):811–27.CrossRefGoogle Scholar
Neubauer, A. C., Fink, A. & Schrausser, D. G. (2002) Intelligence and neural efficiency: The influence of task content and sex on the brain-IQ relationship. Intelligence 30(6):515–36.CrossRefGoogle Scholar
Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H., Beckmann, J. F. & Guthke, J. (2004) Intelligence and individual differences in becoming neurally efficient. ACTA Psychologica (Amsterdam) 116(1):5574.CrossRefGoogle ScholarPubMed
Newcombe, F. (1969) Missile wounds of the brain. Oxford University Press.Google Scholar
Noveck, I. A., Goel, V. & Smith, K. W. (2004) The neural basis of conditional reasoning with arbitrary content. Cortex 40(4–5):613–22.CrossRefGoogle ScholarPubMed
Nyborg, H. (2005) Sex-related differences in general intelligence g, brain size, and social status. Personality and Individual Differences 39(3):497509.CrossRefGoogle Scholar
O'Boyle, M. W., Cunnington, R., Silk, T. J., Vaughan, D., Jackson, G., Syngeniotis, A. & Egan, G. F. (2005) Mathematically gifted male adolescents activate a unique brain network during mental rotation. Brain Research: Cognitive Brain Research 25(2):583–87.Google ScholarPubMed
Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W. A. & Duara, R. (1988) Cerebral metabolic effects of a verbal fluency test: A PET scan study. Journal of Clinical and Experimental Neuropsychology 10(5):565–75.CrossRefGoogle Scholar
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., Rapoport, J. L. & Evans, A. C. (1999) Structural maturation of neural pathways in children and adolescents: In vivo study. Science 283(5409):1908–11.CrossRefGoogle ScholarPubMed
Pavlov, I. P. (1949) Complete collected works. Moscow, Izd. AU SSSR.Google Scholar
Pennington, B. F., Filipek, P. A., Lefly, D., Chhabildas, N., Kennedy, D. N., Simon, J. H., Filley, C. M., Galaburda, A. & DeFries, J. C. (2000) A twin MRI study of size variations in human brain. Journal of Cognitive Neuroscience 12(1):223–32.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331(6157):585–89.CrossRefGoogle ScholarPubMed
Pfleiderer, B., Ohrmann, P., Suslow, T., Wolgast, M., Gerlach, A. L., Heindel, W. & Michael, N. (2004) N-acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not in men: A proton magnetic resonance spectroscopy study. Neuroscience 123(4):1053–58.CrossRefGoogle ScholarPubMed
Piercy, M. & Smyth, V. O. (1962) Right hemisphere dominance for certain non verbal intellectual skills. Brain 85:775–90.CrossRefGoogle ScholarPubMed
Poppelreuter, W. (1917) Die psychischen Schädigungen durch Kopfschuss im Kriege 1914–1916: Die Störungen der niederen und hoheren Sehleistungen durch Verletzungen des Okzipitalhirns. Voss.Google Scholar
Porteus, S. D. (1944) Medical applications of maze test (in prefrontal lobotomy). Medical Journal of Australia 31:558–60.CrossRefGoogle Scholar
Porteus, S. D. & Kepner, R. D. (1944) Mental changes after bilateral prefrontal lobotomy. Genetic Psychology Monographs 29:4115.Google Scholar
Posthuma, D., De Geus, E. J., Baare, W. F., Hulshoff Pol, H. E., Kahn, R. S. & Boomsma, D. I. (2002) The association between brain volume and intelligence is of genetic origin. Nature Neuroscience 5(2):8384.CrossRefGoogle ScholarPubMed
Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1997) Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices test. Cognitive Psychology 33(1):4363.CrossRefGoogle ScholarPubMed
Rae, C., Scott, R. B., Lee, M., Simpson, J. M., Hines, N., Paul, C., Anderson, M., Karmiloff-Smith, A., Styles, P. & Radda, G. K. (2003b) Brain bioenergetics and cognitive ability. Developmental Neuroscience 25(5): 324–31.CrossRefGoogle ScholarPubMed
Rae, C., Scott, R. B., Thompson, C. H., Kemp, G. J., Dumughn, I., Styles, P., Tracey, I. & Radda, G. K. (1996) Is pH a biochemical marker of IQ? Proceedings of the Royal Society of London; Series B; Biological Sciences 263(1373):1061–64.Google Scholar
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L. & Denckla, M. B. (1996) Brain development, gender and IQ in children – A volumetric imaging study. Brain 119:1763–74.CrossRefGoogle ScholarPubMed
Risberg, J., Ancri, D. & Ingvar, D. H. (1968) Regional cerebral blood volume changes related to blood flow variations. Scandinavian Journal of Clinical and Laboratory Investigation. Supplement 102:XI:C.Google ScholarPubMed
Risberg, J., Halsey, J. H., Wills, E. L. & Wilson, E. M. (1975) Hemispheric specialization in normal man studied by bilateral measurements of the regional cerebral blood flow. A study with the 133-Xe inhalation technique. Brain 98(3):511–24.CrossRefGoogle ScholarPubMed
Ross, A. J. & Sachdev, P. S. (2004) Magnetic resonance spectroscopy in cognitive research. Brain Research Reviews 44(2–3):83102.CrossRefGoogle ScholarPubMed
Roth, G. & Dicke, U. (2006) Evolution of the brain and intelligence. Trends in Cognitive Sciences 9(5):250–57.CrossRefGoogle Scholar
Ruff, C. C., Knauff, M., Fangmeier, T. & Spreer, J. (2003) Reasoning and working memory: Common and distinct neuronal processes. Neuropsychologia 41(9):1241–53.CrossRefGoogle ScholarPubMed
Salthouse, T. A. & Coon, V. E. (1993) Influence of task-specific processing speed on age differences in memory. Journal of Gerontology 48(5):P245–55.CrossRefGoogle ScholarPubMed
Schenker, N. M., Desgouttes, A. M. & Semendeferi, K. (2005) Neural connectivity and cortical substrates of cognition in hominoids. Journal of Human Evolution 49(5):547–69.CrossRefGoogle ScholarPubMed
Schmithorst, V. J. & Holland, S. K. (2006) Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. NeuroImage 31(3):1366–79.CrossRefGoogle ScholarPubMed
Schmithorst, V. J., Wilke, M., Dardzinski, B. J. & Holland, S. K. (2005) Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study. Human Brain Mapping 26(2):139–47.CrossRefGoogle Scholar
Schoenemann, P. T., Budinger, T. F., Sarich, V. M. & Wang, W. S. (2000) Brain size does not predict general cognitive ability within families. Proceedings of the National Academy of Sciences USA 97(9):4932–37.CrossRefGoogle Scholar
Schoenemann, P. T., Sheehan, M. J. & Glotzer, L. D. (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience 8(2):242–52.CrossRefGoogle ScholarPubMed
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Van Hoesen, G. W. (2001) Prefrontal cortex in humans and apes: A comparative study of area 10. American Journal of Physical Anthropology 114(3): 224–41.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Semendeferi, K., Lu, A., Schenker, N. & Damasio, H. (2002) Humans and great apes share a large frontal cortex. Nature Neuroscience 5(3):272–76.CrossRefGoogle Scholar
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J. & Giedd, J. (2006) Intellectual ability and cortical development in children and adolescents. Nature 440(7084):676–79.CrossRefGoogle ScholarPubMed
Silverman, P. H. (2004) Rethinking genetic determinism. The Scientist 18(10): 3233.Google Scholar
Sokoloff, L. (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. Journal of Cerebral Blood Flow and Metabolism 1(1):736.CrossRefGoogle ScholarPubMed
Spearman, C. (1904) General intelligence, objectively determined and measured. American Journal of Psychology 15:201–93.CrossRefGoogle Scholar
Sternberg, R. J. (2000) Cognition. The holey grail of general intelligence. Science 289(5478):399401.CrossRefGoogle ScholarPubMed
Strom-Olsen, R., Last, S. L., Brody, M. B. & Knight, G. C. (1943) Prefrontal leukotomy: Results in 30 cases of mental disorder, with observations on surgical technique. Journal of Mental Science 89:165–81.CrossRefGoogle Scholar
Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., Naeser, M. A., Lieberman, I. & Ferrill, D. (1983) The involvement of orbitofrontal cerebrum in cognitive tasks. Neuropsychologia 21(3):235–48.CrossRefGoogle ScholarPubMed
Suchy, Y. & Chelune, G. (2001) Postsurgical changes in self-reported mood and Composite IQ in a matched sample of patients with frontal and temporal lobe epilepsy. Journal of Clinical and Experimental Neuropsychology 23(4):413–23.CrossRefGoogle Scholar
Testa, C., Laakso, M. P., Sabattoli, F., Rossi, R., Beltramello, A., Soininen, H. & Frisoni, G. B. (2004) A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer's disease. Journal of Magnetic Resonance Imaging 19(3):274–82.CrossRefGoogle ScholarPubMed
Thoma, R. J., Yeo, R. A., Gangestad, S., Halgren, E., Davis, J., Paulson, K. M. & Lewine, J. D. (2006) Developmental instability and the neural dynamics of the speed-intelligence relationship. NeuroImage 32(3):1456–64.CrossRefGoogle ScholarPubMed
Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V.P., Huttunen, M., Lonnqvist, J., Standertskjold-Nordenstam, C. G., Kaprio, J., Khaledy, M., Dail, R., Zoumalan, C. I. & Toga, A. W. (2001) Genetic influences on brain structure. Nature Neuroscience 4(12):1253–58.CrossRefGoogle ScholarPubMed
Thompson, R., Crinella, F. M. & Yu, J. (1990) Brain mechanisms in problem solving and intelligence: A lesion survey of the rat brain. Plenum.CrossRefGoogle Scholar
Thorndike, E. L. (1921) Intelligence and its measurement: A symposium. Journal of Educational Psychology 12:124–27.CrossRefGoogle Scholar
Toga, A. W. & Thompson, P. M. (2005) Genetics of brain structure and intelligence. Annual Review of Neuroscience 28:123.CrossRefGoogle ScholarPubMed
Tramo, M. J. & Gazzaniga, M. S. (1999) Brain size, head size, and intelligence quotient in monozygotic twins – Reply from the authors. Neurology 53(1):243–44.Google Scholar
Tramo, M. J., Loftus, W. C., Thomas, C. E., Green, R. L., Mott, L. A. & Gazzaniga, M. S. (1995) Surface area of human cerebral cortex and its gross morphological subdivisions: In vivo measurements in monozygotic twins suggest differential hemisphere effects of genetic factors. Journal of Cognitive Neuroscience 7:292301.CrossRefGoogle ScholarPubMed
Ungerleider, L. G. & Mishkin, M. (1982) Two cortical visual systems. In: Analysis of Visual Behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W., pp. 549589. MIT Press.Google Scholar
Urenjak, J., Williams, S. R., Gadian, D. G. & Noble, M. (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. Journal of Neuroscience 13(3):981–89.CrossRefGoogle ScholarPubMed
Valenzuela, M. J., Sachdev, P. S., Wen, W., Shnier, R., Brodaty, H. & Gillies, D. (2000) Dual voxel proton magnetic resonance spectroscopy in the healthy elderly: Subcortical-frontal axonal N-acetylaspartate levels are correlated with fluid cognitive abilities independent of structural brain changes. NeuroImage 12(6):747–56.CrossRefGoogle ScholarPubMed
Van Valen, L. (1974) Brain size and intelligence in man. American Journal of Physical Anthropology 40(3):417–23.CrossRefGoogle ScholarPubMed
Wachi, M., Tomikawa, M., Fukuda, M., Kameyama, S., Kasahara, K., Sasagawa, M., Shirane, S., Kanazawa, O., Yoshino, M., Aoki, S. & Sohma, Y. (2001) Neuropsychological changes after surgical treatment for temporal lobe epilepsy. Epilepsia 42(Suppl. 6):48.CrossRefGoogle ScholarPubMed
Weinstein, S. & Teuber, H. L. (1957) Effects of penetrating brain injury on intelligence test scores. Science 125:1036–37.CrossRefGoogle ScholarPubMed
Wernicke, C. (1874) Der aphasische Symptomenkomplex: eine psychologische Studie auf anatomischer Basis. Breslau, Cohn and Weigert.Google Scholar
Westerveld, M., Sass, K. J., Chelune, G. J., Hermann, B. P., Barr, W. B., Loring, D. W., Strauss, E., Trenerry, M. R., Perrine, K. & Spencer, D. D. (2000) Temporal lobectomy in children: Cognitive outcome. Journal of Neurosurgery 92(1):2430.CrossRefGoogle ScholarPubMed
Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A. & Honda, M. (2000) Toward neuroanatomical models of analogy: A positron emission tomography study of analogical mapping. Cognitive Psychology 40(3):173–97.CrossRefGoogle ScholarPubMed
Wilke, M., Sohn, J. H., Byars, A. W. & Holland, S. K. (2003) Bright spots: Correlations of gray matter volume with IQ in a normal pediatric population. NeuroImage 20(1):202–15.CrossRefGoogle Scholar
Willerman, L., Schultz, R., Rutledge, J. N. & Bigler, E. D. (1991) In vivo brain size and intelligence. Intelligence 15(2):223–28.CrossRefGoogle Scholar
Winterer, G. & Goldman, D. (2003) Genetics of human prefrontal function. Brain Research Reviews 43(1):134–63.CrossRefGoogle ScholarPubMed
Witelson, S. F., Kigar, D. L. & Harvey, T. (1999) The exceptional brain of Albert Einstein. Lancet 353(9170):2149–53.CrossRefGoogle ScholarPubMed
Wood, B. & Collard, M. (1999) The human genus. Science 284(5411):6571.CrossRefGoogle ScholarPubMed
Yeo, R. A., Hill, D., Campbell, R., Vigil, J. & Brooks, W. M. (2000) Developmental instability and working memory ability in children: A magnetic resonance spectroscopy investigation. Developmental Neuropsychology 17(2):143–59.CrossRefGoogle ScholarPubMed
Zhang, K. & Sejnowski, T. J. (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences USA 97:5621–26.CrossRefGoogle ScholarPubMed