Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T16:04:24.968Z Has data issue: false hasContentIssue false

Identification of bipolar cell subtypes by protein kinase C-like immunoreactivity in the goldfish retina

Published online by Cambridge University Press:  02 June 2009

Saburosuke Suzuki
Affiliation:
Department of Information Physiology, National Institute for Physiology Sciences, Okazaki 444, Japan
Akimichi Kaneko
Affiliation:
Department of Information Physiology, National Institute for Physiology Sciences, Okazaki 444, Japan

Abstract

Subtypes of bipolar cells were identified by protein kinase C (PKC)-like immunoreactivity in the goldfish retina. The PKC-like immunoreactivity was visualized by either the avidin/biotin peroxidase method or immunofluorescence method. In frozen cross sections and in wholemounts, the monoclonal antibody against α species of PKC reacted with ON-type bipolar cells, identified by the location of axon terminals in sublamina b of the inner plexiform layer. OFF-type bipolar cells (identified by the location of the axon terminal in sublamina a of the inner plexiform layer) were not immunoreactive. The immunoreactive cells consisted of two subtypes; the rod-dominant ON-type with a large soma and a large bulbous axon terminal, and the cone-dominant ON-type with a small soma and small axon terminal. Antibodies against β and γ species of PKC did not react with any bipolar cells. Of the isolated bipolar cells, enzymatically dissociated from the goldfish retina, 59% were immunoreactive to the monoclonal antibody against α species of PKC. The immunoreactive isolated cells also consisted of two morphological types. Each of them had a morphology typical either to rod-dominant ON-type or to cone-dominant ON-type.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cajal, S.R. (1972). The Structure of the Retina (English translation by Thorpe, S.A., & Glickstein, M., from Cajal, S.R. (1892). La rétine des vertébrés. La Cellule 9, 121246.). Springfield: C. C. Thomas.Google Scholar
Coussens, L., Parker, P.J., Rhee, L., Yang-Feng, T. L., Chen, E., Waterfield, M. D., Francke, U. & Ullrich, A. (1986). Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 233, 859866.CrossRefGoogle ScholarPubMed
Dacheux, R.F. & Raviola, E. (1986). The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. Journal of Neuroscience 6, 331345.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. Jr, Kaneko, A. & Tachibana, M. (1977). Neuronal architecture of ON and OFF pathways to ganglion cells in carp retina. Science 198, 12671269.CrossRefGoogle Scholar
Famiglietti, E.V. Jr & Kolb, H. (1976). Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science 194, 193195.CrossRefGoogle ScholarPubMed
Girard, P.R., Mazzei, G.J., Wood, J. G. & Kuo, J.F. (1985). Polyclonal antibodies to hospholipid/Ca2+-dependent protein kinase and immunocytochemical localization of the enzyme in rat brain. Proceedings of the National Academy of Sciences of the U.S.A. 82, 30303034.CrossRefGoogle Scholar
Grünert, U., Greferath, U. & Wässle, H. (1989). Rod bipolar cells show protein kinase C-like immunoreactivity in the cat and other mammalian retinae. Neuroscience Abstract 15, 1209.Google Scholar
Gynther, L.C., Young, H.M. & Vaney, D.I. (1989). Topographic relationships between rod-signal interneurons in rabbit retina. Neuroscience Abstract 15, 967.Google Scholar
Hidaka, H., Tanaka, T., Onoda, K., Hagiwara, M., Watanabe, M., Ohta, H., Ito, Y., Tsurudome, M. & Yoshida, T. (1988). Cell type specific expression of protein kinase C isozyme in the rabbit cerebellum. Journal of Biological Chemistry 263, 45234526.CrossRefGoogle ScholarPubMed
Ishida, A.T., Stell, W.K. & Lightfoot, D.O. (1980). Rod and cone inputs to bipolar cells in goldfish retina. Journal of Comparative Neurology 191, 315335.CrossRefGoogle ScholarPubMed
Kaneko, A. (1970). Physiological and morphological identification of horizontal, bipolar, and amacrine cells in goldfish retina. Journal of Physiology 207, 623633.CrossRefGoogle ScholarPubMed
Kaneko, A., Famiglietti, E.V. Jr & Tachibana, M. (1979). Physiological and morphological identification of signal pathways in the carp retina. In Neurobiology of Chemical Transmission, ed. Hall, Z.W. & Otsuka, M., pp. 235251. New York: Wiley.Google Scholar
Kaneko, A. & Tachibana, M. (1978). Convergence of rod and cone signals to single bipolar cells in the carp retina. Sensory Processes 2, 383387.Google ScholarPubMed
Kaneko, A. & Tachibana, M. (1985). A voltage-clamp analysis of membrane currents in solitary bipolar cells dissociated from Carassius auratus. Journal of Physiology 358, 131152.CrossRefGoogle ScholarPubMed
Kaneko, A., Pinto, L.H. & Tachibana, M. (1989). Transient calcium current of retinal bipolar cells of the mouse. Journal of Physiology 410, 613629.CrossRefGoogle ScholarPubMed
Kelleher, D.J. & Johnson, G.L. (1985). Purification of protein kinase C from bovine rod outer segments. Journal of Cyclic Nucleotide and Protein Phosphorylation Research 10, 579591.Google ScholarPubMed
Kelleher, D.J. & Johnson, G.L. (1986). Phosphorylation of rhodopsin by protein kinase C in vitro. Journal of Biological Chemistry 261, 47494757.CrossRefGoogle ScholarPubMed
Kikkawa, U., Ogita, K., Shearman, M.S., Ase, K., Sekiguchi, K., Naor, Z., Kishimoto, A., Nishizuka, Y., Saito, N., Tanaka, C., Ono, Y., Fujii, T. & Igarashi, K. (1988). The family of protein kinase C: its molecular heterogeneity and differential expression. Cold Spring Harbor Symposia on Quantitative Biology 53, 97102.CrossRefGoogle ScholarPubMed
Negishi, K., Kato, S. & Teranishi, T. (1988). Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neuroscience Letters 94, 247252.CrossRefGoogle ScholarPubMed
Nelson, R., Kolb, H., Robinson, M.M. & Mariani, A.P. (1981). Neural circuitry of the cat retina: cone pathways to ganglion cells. Vision Research 21, 15271536.CrossRefGoogle ScholarPubMed
Nishizuka, Y. (1984). Turnover of inositol phospholipids and signal transduction. Science 225, 13651370.CrossRefGoogle ScholarPubMed
Ohno, S., Kawasaki, H., Imajoh, S., Suzuki, K., Inagaki, M., Yokokura, H., Sakoh, T. & Hidaka, H. (1987). Tissue-specific expression of three distinct types of rabbit protein kinase C. Nature 325, 161166.CrossRefGoogle ScholarPubMed
Saito, T. & Kujiraoka, T., (1982). Physiological and morphological identification of two types of ON-center bipolar cells in the carp retina. Journal of Comparative Neurology 205, 161170.CrossRefGoogle ScholarPubMed
Saito, T., Kujiraoka, T., Yonaha, T. & Chino, Y. (1985). Reexamination of photoreceptor-bipolar connectivity patterns in carp retina: HRP-EM and Golgi-EM studies. Journal of Comparative Neurology 236, 141160.CrossRefGoogle ScholarPubMed
Suzuki, S., Tachibana, M. & Kaneko, A. (1990). Effects of glycine and GABA on isolated bipolar cells of the mouse retina. Journal of Physiology 421, 645662.CrossRefGoogle ScholarPubMed
Tachibana, M. (1983). Ionic currents of solitary horizontal cells isolated from goldfish retina. Journal of Physiology 345, 329351.CrossRefGoogle ScholarPubMed
Tachibana, M. & Kaneko, A. (1987). γr-aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proceedings of the National Academy of Sciences of the U.S.A. 84, 35013505.CrossRefGoogle Scholar
Tachibana, M. & Kaneko, A. (1988). Retinal bipolar cells receive negative feedback input from GABAergic amacrine cells. Visual Neuroscience 1, 297305.CrossRefGoogle ScholarPubMed
Werblin, F.S. & Dowling, J.E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus, II: Intracellular recording. Journal of Neurophysiology 32, 339355.CrossRefGoogle ScholarPubMed
Wood, J.G., Girard, P.R., Mazzei, G.J. & Kuo, J.F. (1986). Immunocytochemical localization of protein kinase C in identified neuronal compartments of rat brain. Journal of Neuroscience 6, 25712577.CrossRefGoogle ScholarPubMed
Wood, J.G., Hart, C.E., Mazzei, G.J., Girard, P.R., & Kuo, J.F. (1988). Distribution of protein kinase C immunoreactivity in rat retina. Histochemical Journal 20, 6368.CrossRefGoogle ScholarPubMed
Young, S., Rothbard, J. & Parker, P.J. (1988). A monoclonal antibody recognizing the site of limited proteolysis of protein kinase C: inhibition of down-regulation in vivo. European Journal of Biochemistry 173, 247252.CrossRefGoogle ScholarPubMed