Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T22:10:13.767Z Has data issue: false hasContentIssue false

Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig

Published online by Cambridge University Press:  02 June 2009

Leo Peichl
Affiliation:
Max-Planck-Institut für Hirnforschung, Deutschordenstr. 46, D-60528 Frankfurt/M., Germany
Juncal González-Soriano
Affiliation:
Departamento de Anatomia y Embriologia, Facultad de Veterinaria, Universidad Complutense, E-28040 Madrid, Spain

Abstract

Retinal horizontal cells of four rodent species, rat, mouse, gerbil, and guinea pig were examined to determine whether they conform to the basic pattern of two horizontal cell types found in other mammalian orders. Intracellular injections of Lucifer-Yellow were made to reveal the morphologies of individual cells. Immunocytochemistry with antisera against the calcium-binding proteins calbindin D-28k and parvalbumin was used to assess population densities and mosaics.

Lucifer-Yellow injections showed axonless A-type and axon-bearing B-type horizontal cells in guinea pig, but revealed only B-type cells in rat and gerbil retinae. Calbindin immunocytochemistry labeled the A-and B-type populations in guinea pig, but only a homogeneous regular mosaic of cells with B-type features in rat, mouse, and gerbil. All calbindin-immunoreactive horizontal cells in the latter species were also parvalbumin-immunoreactive; comparison with Nissl-stained retinae showed that both antisera label all of the horizontal cells. Taken together, the data from cell injections and the population studies provide strong evidence that rat, mouse, and gerbil retinae have only one type of horizontal cell, the axon-bearing B-type, where as the guinea pig has both A-and B-type cells. Thus, at least three members of the family Muridae differ from other rodents and deviate from the proposed mammalian scheme of horizontal cell types.

The absence of A-type cells is apparently not linked to any peculiarities in the photoreceptor populations, and there is no consistent match between the topographic distributions of the horizontal cells and those of the cone photoreceptors or ganglion cells across the four rodent species. However, the cone to horizontal cell ratio is rather similar in the species with and without A-type cells.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balkema, G. W. & Pinto, L. H. (1982). Electrophysiology of retinal ganglion cells in the mouse: A study of normally pigmented mouse and a congenic hypopigmentation mutant, pearl. Journal of Neurophysiology 48, 968980.CrossRefGoogle Scholar
Boycott, B. B. (1988). Horizontal cells of mammalian retinae. Neuroscience Research (Suppl.) 8, S97S111.Google ScholarPubMed
Boycott, B. B. & Hopkins, J. M. (1981). Microglia in the retina of monkey and other mammals; its distinction from other types of glia and horizontal cells. Neuroscience 6, 679688.CrossRefGoogle ScholarPubMed
Boycott, B. B., Peichl, L. & Wässle, H. (1978). Morphological types of horizontal cell in the retina of the domestic cat. Proceedings of the Royal Society B (London) 203, 229245.Google ScholarPubMed
Boycott, B. B., Hopkins, J. M. & Sperling, H. G. (1987). Cone connections of the horizontal cells of the rhesus monkey’s retina. Proceedings of the Royal Society B (London) 229, 345379.Google ScholarPubMed
Carleton, M. D. (1984). Introduction to rodents. In Orders and Families of Recent Mammals of the World, ed. Anderson, S. & Jones, J. K., pp. 255265. New York: John Wiley & Sons.Google Scholar
Carter-Dawson, L. D. & la Vail, M. M. (1979). Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. Journal of Comparative Neurology 188, 245262.CrossRefGoogle ScholarPubMed
Chu, Y., Humphrey, M. F. & Constable, I. J. (1993). Horizontal cells of the normal and dystrophic rat retina: A wholemount study using immunolabelling for the 28 kDa calcium-binding protein. Experimental Eye Research 57, 141148.CrossRefGoogle ScholarPubMed
Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. (1990). Human photoreceptor topography. Journal of Comparative Neurology 292, 497523.CrossRefGoogle ScholarPubMed
Dahl, D. & Bignami, A. (1991). Neurofilament phosphorylation in the axonless horizontal cells of rat retina. Brain Research 553, 163166.CrossRefGoogle ScholarPubMed
Deegan, J. F. & Jacobs, G. H. (1993). On the identity of the cone types of the rat retina. Experimental Eye Research 56, 375377.CrossRefGoogle ScholarPubMed
Do-Nascimento, J. L. M., Do-Nascimento, R. S. V., Damasceno, B. A. & Silveira, L. C. L. (1991). The neurons of the retinal ganglion cell layer of the guinea pig: Quantitative analysis of their distribution and size. Brazilian Journal of Medical and Biological Research 24, 199214.Google ScholarPubMed
Dräger, U. C. (1983). Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303, 169172.CrossRefGoogle Scholar
Dräger, U. C., Olsen, J. F. (1981). Ganglion cell distribution in the retina of the mouse. Investigative Ophthalmology and Visual Science 20, 285293.Google ScholarPubMed
Dräger, U. C., Edwards, D. L. & Barnstable, C. J. (1984). Antibodies against filamentous components in discrete cell types of the mouse retina. Journal of Neuroscience 4, 20252042.CrossRefGoogle ScholarPubMed
Dreher, B., Sefton, A. J., Ni, S. Y. K. & Nisbett, G. (1985). The morphology, number, distribution and central projections of class I retinal ganglion cells in albino and hooded rats. Brain, Behavior, and Evolution 26, 1048.CrossRefGoogle Scholar
Famiglietti, E. V. (1990). A new type of wide-field horizontal cell, presumably linked to blue cones, in rabbit retina. Brain Research 535, 174179.CrossRefGoogle ScholarPubMed
Fisher, S. K. & Boycott, B. B. (1974). Synaptic connexions made by horizontal cells within the outer plexiform layer of the retina of the cat and rabbit. Proceedings of the Royal Society B (London) 186, 317331.Google Scholar
Gallego, A. (1971). Horizontal and amacrine cells in the mammal’s retina. Vision Research (Suppl.) 3, 3350.CrossRefGoogle Scholar
Gallego, A. (1986). Comparative studies on horizontal cells and a note on microglial cells. Progress in Retinal Research 5, 165206.CrossRefGoogle Scholar
Govardovskii, V. I., Röhlich, P., Szél, A. & Khokhlova, T. V. (1992). Cones in the retina of the Mongolian gerbil, Meriones unguiculatus: An immunocytochemical and electrophysiological study. Vision Research 32, 1927.CrossRefGoogle ScholarPubMed
Grünert, U. & Wässle, H. (1990). GABA-like immunoreactivity in the macaque monkey retina: A light and electron microscopic study. Journal of Comparative Neurology 297, 509524.CrossRefGoogle ScholarPubMed
Harman, A. M. (1994). Horizontal cells in the retina of the brush-tailed possum. Experimental Brain Research (in press).CrossRefGoogle ScholarPubMed
Harman, A. M. & Beazley, L. D. (1991). Horizontal cells in the marsupial retina. Society for Neuroscience Abstracts 17(1), 559.Google Scholar
Harman, A. M. & Ferguson, J. (1994). Morphology and birth dates of horizontal cells in the retina of a marsupial. Journal of Comparative Neurology 340, 392404.CrossRefGoogle ScholarPubMed
Hokoç, J. N., de Oliveira, M. M. M. & Ahnelt, P. (1993). Three types of horizontal cells in a primitive mammal, the opossum (Didelphis marsupialis aurita): A Golgi-LM study. Investigative Ophthalmology and Visual Science 34, 1152.Google Scholar
Honrubia, F. M. & Elliot, J. H. (1969). Horizontal cell of the mammal retina. Archives of Ophthalmology 82, 98104.CrossRefGoogle ScholarPubMed
Jacobs, G. H. & Neitz, J. (1989). Cone monochromacy and a reversed Purkinje shift in the gerbil. Experientia 45, 317319.CrossRefGoogle Scholar
Jacobs, G. H., Neitz, J. & Deegan, J. F. (1991). Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353, 655656.CrossRefGoogle ScholarPubMed
Kolb, H. (1974). The connections between horizontal cells and photoreceptors in the retina of the cat: Electron microscopy of Golgi preparations. Journal of Comparative Neurology 155, 114.CrossRefGoogle ScholarPubMed
Kolb, H., Linberg, K. A. & Fisher, S. K. (1992). Neurons of the human retina: A Golgi study. Journal of Comparative Neurology 318, 147187.CrossRefGoogle ScholarPubMed
Larabi, Y. & Nguyen-Legros, J. (1991). Morphology, density and distribution of tyrosine hydroxylase immunoreactive cells in the retina in the gerbil Meriones shawi. Relationships with horizontal cells. Journal für Hirnforschung 32, 387395.Google ScholarPubMed
Mangel, S. C. (1991). Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. Journal of Physiology 442, 211234.CrossRefGoogle Scholar
Mangel, S. C. & Miller, R. F. (1987). Horizontal cells contribute to the receptive field surround of ganglion cells in the rabbit retina. Brain Research 414, 182186.CrossRefGoogle Scholar
Mariani, A. P. (1985). Multiaxonal horizontal cells in the retina of the tree shrew, Tupaia glis. Journal of Comparative Neurology 233, 553563.CrossRefGoogle ScholarPubMed
Martin, P. R. & Grünert, U. (1992). Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. Journal of Comparative Neurology 323, 269287.CrossRefGoogle ScholarPubMed
McCall, M. J., Robinson, S. R. & Dreher, B. (1987). Differential retinal growth appears to be the primary factor producing the ganglion cell density gradient in the rat. Neuroscience Letters 79, 7884.CrossRefGoogle ScholarPubMed
Mitrofanis, J. & Finlay, B. L. (1990). Developmental changes in the distribution of retinal catecholaminergic neurones in hamsters and gerbils. Journal of Comparative Neurology 292, 480494.CrossRefGoogle ScholarPubMed
Müller, B. & Peichl, L. (1989). Topography of cones and rods in the tree shrew retina. Journal of Comparative Neurology 282, 581594.CrossRefGoogle ScholarPubMed
Müller, B. & Peichl, L. (1993). Horizontal cells in the cone-dominated tree shrew retina: Morphology, photoreceptor contacts, and topographical distribution. Journal of Neuroscience 13, 36283646.CrossRefGoogle ScholarPubMed
Nowak, R. M. (1991). Walker’s Mammals of the World, 5th edition. Baltimore: Johns Hopkins University Press.Google Scholar
Packer, O., Hendrickson, A. E. & Curcio, C. A. (1989). Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). Journal of Comparative Neurology 288, 165183.CrossRefGoogle ScholarPubMed
Partridge, L. D. & Brown, J. E. (1970). Receptive fields of rat retinal ganglion cells. Vision Research 10, 455460.CrossRefGoogle ScholarPubMed
Pasteels, B., Rogers, J., Blachier, F. & Pochet, R. (1990). Calbindin and calretinin localization in retina from different species. Visual Neuroscience 5, 116.CrossRefGoogle ScholarPubMed
Peichl, L. & González-Soriano, J. (1993). Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina. Journal of Neuroscience 13, 40914100.CrossRefGoogle ScholarPubMed
Peichl, L., Buhl, E. H. & Boycott, B. B. (1987). Alpha ganglion cells in rabbit retina. Journal of Comparative Neurology 263, 2541.CrossRefGoogle ScholarPubMed
Pinol, M. R., Kägi, U., Heizmann, C. W., Vogel, B., Séquier, J.-M., Haas, W. & Hunziker, W. (1990). Poly-and monoclonal antibodies against recombinant rat brain calbindin D-28K were produced to map its selective distribution in the central nervous system. Journal of Neurochemistry 54, 18271833.CrossRefGoogle ScholarPubMed
Polley, E. H. & Walsh, C. (1984). A technique for flat embedding and en face sectioning of the mammalian retina for autoradiography. Journal of Neuroscience Methods 12, 5764.CrossRefGoogle ScholarPubMed
Rabié, A., Thomasset, M., Parkes, C.O. & Clavel, M. C. (1985). Immunocytochemical detection of 28000–MW calcium-binding protein in horizontal cells of the rat retina. Cell and Tissue Research 240, 493496.CrossRefGoogle ScholarPubMed
Ramón, Y Cajal S. (1893). La rétine des vertébrés. La Cellule 9, 119257.Google Scholar
Raviola, E. & Dacheux, R. F. (1990). Axonless horizontal cells of the rabbit retina: Synaptic connections and origin of the rod aftereffect. Journal of Neurocytology 19, 731736.CrossRefGoogle ScholarPubMed
Röhrenbeck, J., Wässle, H. & Heizmann, C. W. (1987). Immunocytochemical labelling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neuroscience Letters 77, 255260.CrossRefGoogle ScholarPubMed
Röhrenbeck, J., Wässle, H. & Boycott, B. B. (1989). Horizontal cells in the monkey retina: Immunocytochemical staining with antibodies against calcium-binding proteins. European Journal of Neuroscience 1, 407420.CrossRefGoogle ScholarPubMed
Silveira, L. C. L., Yamada, E. S. & Picanço-Diniz, C. W. (1989). Displaced horizontal cells and biplexiform horizontal cells in the mammalian retina. Visual Neuroscience 3, 483488.CrossRefGoogle ScholarPubMed
Somogyi, P. (1988). Immunocytochemical demonstration of GABA in physiologically characterized, HRP-filled neurons and their postsynaptic targets. In Molecular Neuroanatomy, ed. Van Leeuwen, , Buijs, , Pool, , & Pach, , pp. 339359. Amsterdam: Elsevier.Google Scholar
Steinberg, R. H., Reid, M. & Lacy, P. L. (1973). The distribution of rods and cones in the retina of the cat (Felis domesticus). Journal of Comparative Neurology 148, 229248.CrossRefGoogle ScholarPubMed
Sterling, P., Freed, M. & Smith, R. G. (1986). Microcircuitry and functional architecture of the cat retina. Trends in Neurosciences 9, 186192.CrossRefGoogle Scholar
Stichel, C. C., Kägi, U. & Heizmann, C. W. (1986). Parvalbumin in cat brain: Isolation, characterization, and localization. Journal of Neurochemistry 47, 4653.CrossRefGoogle ScholarPubMed
Stone, C. & Pinto, L. H. (1993). Response properties of ganglion cells in the isolated mouse retina. Visual Neuroscience 10, 3139.CrossRefGoogle ScholarPubMed
Suzuki, H. & Pinto, L. H. (1986). Response properties of horizontal cells in the isolated retina of wild-type and pearl mutant mice. Journal of Neuroscience 6, 11221128.CrossRefGoogle ScholarPubMed
Szél, Á. & Röhlich, P. (1992). Two cone types of rat retina detected by anti-visual pigment antibodies. Experimental Eye Research 55, 4752.CrossRefGoogle ScholarPubMed
Szél, Á., Röhlich, P., Caffé, A. R., Jukiusson, B., Aguirre, G. & van Veen, T. (1992). Unique topographical separation of two spectral classes of cones in the mouse retina. Journal of Comparative Neurology 325, 327342.CrossRefGoogle ScholarPubMed
Tauchi, M. & Masland, R. H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina. Proceedings of the Royal Society B (London) 223, 101119.Google ScholarPubMed
Versaux-Botteri, C, Pochet, R. & Nguyen-Legros, J. (1989). Immunohistochemical localization of GABA-containing neurons during postnatal development of the rat retina. Investigative Ophthalmology and Visual Science 30, 652659.Google ScholarPubMed
Vickers, J. C. & Costa, M. (1992). The neurofilament triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea pig. Neuroscience 49, 73100.CrossRefGoogle ScholarPubMed
Wässle, H. & Riemann, H. J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society B (London) 200, 441461.Google ScholarPubMed
Wässle, H. & Boycott, B. B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447480.CrossRefGoogle ScholarPubMed
Wässle, H., Boycott, B. B. & Peichl, L. (1978 a). Receptor contacts of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society B (London) 203, 247267.Google ScholarPubMed
Wässle, H., Peichl, L. & Boycott, B. B. (1978 b). Topography of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society B (London), 203, 269291.Google ScholarPubMed
Wässle, H., Peichl, L. & Boycott, B.B. (1981). Dendritic territories of cat retinal ganglion cells. Nature 292, 344345.CrossRefGoogle ScholarPubMed
Wässle, H., Boycott, B. B. & Röhrenbeck, J. (1989). Horizontal cells in the monkey retina: Cone connections and dendritic network. European Journal of Neuroscience 1, 421435.CrossRefGoogle ScholarPubMed
West, R. W. (1976). Light and electron microscopy of the ground squirrel retina: Functional considerations. Journal of Comparative Neurology 168, 355378.CrossRefGoogle ScholarPubMed
West, R. W. (1978). Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections. Vision Research 18, 129136.CrossRefGoogle ScholarPubMed
West, R. W. & Dowling, J. E. (1975). Anatomical evidence for cone and rod-like receptors in the gray squirrel, ground squirrel, and prairie dog retinas. Journal of Comparative Neurology 159, 439460.CrossRefGoogle ScholarPubMed
Yamada, E. S., Silveira, L. C. L. & Coimbra, A. J. F. (1992). Topography of A-type horizontal cells in the retina of the capybara. Brazilian Journal of Medical and Biological Research 25, 619632.Google Scholar
Young, H.M. & Vaney, D.I. (1991). Rod-signal interneurons in the rabbit retina: 1. Rod bipolar cells. Journal of Comparative Neurology 310, 139153.CrossRefGoogle ScholarPubMed