Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T08:20:03.171Z Has data issue: false hasContentIssue false

The specific role of histone deacetylase 2 in adult neurogenesis

Published online by Cambridge University Press:  14 April 2010

Melanie Jawerka
Affiliation:
Institute for Stem Cell Research, HelmholtzZentrum Munich, German Research Center for Environmental Health, Neuherberg/Munich, Germany
Dilek Colak
Affiliation:
Institute for Stem Cell Research, HelmholtzZentrum Munich, German Research Center for Environmental Health, Neuherberg/Munich, Germany
Leda Dimou
Affiliation:
Department of Physiological Genomics, Institute of Physiology, University of Munich, Munich, Germany
Carmen Spiller
Affiliation:
Institute for Toxicology, HelmholtzZentrum Munich German Research Center for Environmental Health, Neuherberg/Munich, Germany
Sabine Lagger
Affiliation:
Max F. Perutz Laboratories, Medical University of Vienna, Institute of Medical Biochemistry, Vienna, Austria
Rusty L. Montgomery
Affiliation:
Department of Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, TX, USA
Eric N. Olson
Affiliation:
Department of Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, TX, USA
Wolfgang Wurst
Affiliation:
Institute for Developmental Genetics, HelmholtzZentrum Munich, German Research Center for Environmental Health, Neuherberg/Munich, Germany MPI for Psychiatry, Munich, Germany
Martin Göttlicher
Affiliation:
Institute for Toxicology, HelmholtzZentrum Munich German Research Center for Environmental Health, Neuherberg/Munich, Germany Institute of Toxicology and Environmental Hygiene Technical University Munich, Germany
Magdalena Götz*
Affiliation:
Institute for Stem Cell Research, HelmholtzZentrum Munich, German Research Center for Environmental Health, Neuherberg/Munich, Germany Department of Physiological Genomics, Institute of Physiology, University of Munich, Munich, Germany
*
Correspondence should be addressed to: Magdalena Götz, Institute for Stem Cell Research HelmholtzZentrum München, Neuherberg/Munich, Germany phone: +49-89-31873750 fax: +49-89-31873761 email: magdalena.goetz@helmholtz-muenchen.de

Abstract

Gene expression changes during cell differentiation are thought to be coordinated by histone modifications, but still little is known about the role of specific histone deacetylases (HDACs) in cell fate decisions in vivo. Here we demonstrate that the catalytic function of HDAC2 is required in adult, but not embryonic neurogenesis. While brain development and adult stem cell fate were normal upon conditional deletion of HDAC2 or in mice lacking the catalytic activity of HDAC2, neurons derived from both zones of adult neurogenesis die at a specific maturation stage. This phenotype is correlated with an increase in proliferation and the aberrant maintenance of proteins normally expressed only in progenitors, such as Sox2, also into some differentiating neurons, suggesting that HDAC2 is critically required to silence progenitor transcripts during neuronal differentiation of adult generated neurons. This cell-autonomous function of HDAC2 exclusively in adult neurogenesis reveals clear differences in the molecular mechanisms regulating neurogenesis during development and in adulthood.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adcock, I.M., Ford, P., Ito, K. and Barnes, P.J. (2006) Epigenetics and airways disease. Respiratory Research 7, 21.CrossRefGoogle ScholarPubMed
Alvarez-Buylla, A., Garcia-Verdugo, J.M. and Tramontin, A.D. (2001) A unified hypothesis on the lineage of neural stem cells. Nature Reviews. Neuroscience 2, 287293.CrossRefGoogle ScholarPubMed
Balasubramaniyan, V., Boddeke, E., Bakels, R., Kust, B., Kooistra, S., Veneman, A. et al. (2006) Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 143, 939951.CrossRefGoogle ScholarPubMed
Brill, M.S., Snapyan, M., Wohlfrom, H., Ninkovic, J., Jawerka, M., Mastick, G.S. et al. (2008) A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. The Journal of Neuroscience 28, 64396452.CrossRefGoogle ScholarPubMed
Brill, M.S., Ninkovic, J., Winpenny, E., Hodge, R.D., Ozen, I., Yang, R. et al. (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nature Neuroscience 12, 15241533.CrossRefGoogle ScholarPubMed
Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A. and Lledo, P.M. (2003) Becoming a new neuron in the adult olfactory bulb. Nature Neuroscience 6, 507518.CrossRefGoogle ScholarPubMed
Cau, E., Gradwohl, G., Fode, C. and Guillemot, F. (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 16111621.CrossRefGoogle ScholarPubMed
Chen, B. and Cepko, C.L. (2007) Requirement of histone deacetylase activity for the expression of critical photoreceptor genes. BMC Developmental Biology 7, 78.CrossRefGoogle ScholarPubMed
Cloos, P.A., Christensen, J., Agger, K. and Helin, K. (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes and Development 22, 11151140.CrossRefGoogle Scholar
Cohen, H.Y., Lavu, S., Bitterman, K.J., Hekking, B., Imahiyerobo, T.A., Miller, C. et al. (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Molecular Cell 13, 627638.CrossRefGoogle Scholar
Colak, D., Mori, T., Brill, M.S., Pfeifer, A., Falk, S., Deng, C. et al. (2008) Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. Journal of Neuroscience 28, 434446.CrossRefGoogle ScholarPubMed
De Pietri Tonelli, D., Pulvers, J.N., Haffner, C., Murchison, E.P., Hannon, G.J. and Huttner, W.B. (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 39113921.CrossRefGoogle Scholar
de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S. and van Kuilenburg, A.B. (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemical Journal 370, 737749.CrossRefGoogle ScholarPubMed
Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. and Tsai, L.H. (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178182.CrossRefGoogle ScholarPubMed
Ge, S., Goh, E.L., Sailor, K.A., Kitabatake, Y., Ming, G.L. and Song, H. (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589593.CrossRefGoogle ScholarPubMed
Ge, S., Pradhan, D.A., Ming, G.L. and Song, H. (2007) GABA sets the tempo for activity-dependent adult neurogenesis. Trends in Neuroscience 30, 18.CrossRefGoogle ScholarPubMed
Glozak, M.A., Sengupta, N., Zhang, X. and Seto, E. (2005) Acetylation and deacetylation of non-histone proteins. Gene 363, 1523.CrossRefGoogle ScholarPubMed
Grozinger, C.M. and Schreiber, S.L. (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chemistry and Biology 9, 316.CrossRefGoogle ScholarPubMed
Guan, J.S., Haggarty, S.J., Giacometti, E., Dannenberg, J.H., Joseph, N., Gao, J. et al. (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 5560.CrossRefGoogle ScholarPubMed
Hack, M.A., Sugimori, M., Lundberg, C., Nakafuku, M. and Gotz, M. (2004) Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Molecular and Cellular Neurosciences 25, 664678.CrossRefGoogle ScholarPubMed
Hack, M.A., Saghatelyan, A., de Chevigny, A., Pfeifer, A., Ashery-Padan, R., Lledo, P.M. et al. (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nature Neuroscience 8, 865872.CrossRefGoogle ScholarPubMed
Haubst, N., Berger, J., Radjendirane, V., Graw, J., Favor, J., Saunders, G.F. et al. (2004) Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development 131, 61316140.CrossRefGoogle ScholarPubMed
Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. and Gage, F.H. (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proceedings of the National Academy of Sciences of the U.S.A. 101, 1665916664.CrossRefGoogle ScholarPubMed
Humphrey, G.W., Wang, Y.H., Hirai, T., Padmanabhan, R., Panchision, D.M., Newell, L.F. et al. (2008) Complementary roles for histone deacetylases 1, 2, and 3 in differentiation of pluripotent stem cells. Differentiation 76, 348356.CrossRefGoogle Scholar
Jessberger, S., Nakashima, K., Clemenson, G.D. Jr., Mejia, E., Mathews, E., Ure, K. et al. (2007) Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. Journal of Neuroscience 27, 59675975.CrossRefGoogle ScholarPubMed
Johansson, C.B., Momma, S., Clarke, D.L., Risling, M., Lendahl, U. and Frisen, J. (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 2534.CrossRefGoogle ScholarPubMed
Kempermann, G., Jessberger, S., Steiner, B. and Kronenberg, G. (2004) Milestones of neuronal development in the adult hippocampus. Trends in Neuroscience 27, 447452.CrossRefGoogle ScholarPubMed
Kim, D., Frank, C.L., Dobbin, M.M., Tsunemoto, R.K., Tu, W., Peng, P.L. et al. (2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803817.CrossRefGoogle ScholarPubMed
Kohwi, M., Osumi, N., Rubenstein, J.L. and Alvarez-Buylla, A. (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. Journal of Neuroscience 25, 69977003.CrossRefGoogle ScholarPubMed
Kuwabara, T., Hsieh, J., Nakashima, K., Taira, K. and Gage, F.H. (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779793.CrossRefGoogle ScholarPubMed
Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A. and Bally-Cuif, L. (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nature Neuroscience 11, 641648.CrossRefGoogle ScholarPubMed
Li, X., Kato, Y., Tsuji, Y. and Tsunoda, Y. (2008) The effects of trichostatin a on mRNA expression of chromatin structure-, DNA methylation-, and development-related genes in cloned mouse blastocysts. Cloning and Stem Cells 10, 133142.CrossRefGoogle ScholarPubMed
Li, Y., Yokota, T., Gama, V., Yoshida, T., Gomez, J.A., Ishikawa, K. et al. (2007) Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell Death and Differentiation 14, 20582067.CrossRefGoogle ScholarPubMed
Ligon, K.L., Fancy, S.P., Franklin, R.J. and Rowitch, D.H. (2006) Olig gene function in CNS development and disease. Glia 54, 110.CrossRefGoogle ScholarPubMed
Liu, A., Han, Y.R., Li, J., Sun, D., Ouyang, M., Plummer, M.R. et al. (2007) The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. Journal of Neuroscience 27, 73397343.CrossRefGoogle ScholarPubMed
Liu, H.K., Belz, T., Bock, D., Takacs, A., Wu, H., Lichter, P. et al. (2008) The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes and Development 22, 24732478.CrossRefGoogle ScholarPubMed
Lyssiotis, C.A., Walker, J., Wu, C., Kondo, T., Schultz, P.G. and Wu, X. (2007) Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proceedings of the National Academy of Sciences of the U.S.A. 104, 1498214987.CrossRefGoogle ScholarPubMed
MacDonald, J.L. and Roskams, A.J. (2008) Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Developmental Dynamics 237, 22562267.CrossRefGoogle ScholarPubMed
Majdzadeh, N., Wang, L., Morrison, B.E., Bassel-Duby, R., Olson, E.N. and D'Mello, S.R. (2008) HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Developmental Neurobiology 68, 10761092.CrossRefGoogle ScholarPubMed
Marin-Husstege, M., Muggironi, M., Liu, A. and Casaccia-Bonnefil, P. (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. Journal of Neuroscience 22, 1033310345.CrossRefGoogle ScholarPubMed
Merkle, F.T., Mirzadeh, Z. and Alvarez-Buylla, A. (2007) Mosaic organization of neural stem cells in the adult brain. Science 317, 381384.CrossRefGoogle ScholarPubMed
Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., Garcia-Verdugo, J.M. and Alvarez-Buylla, A. (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell and Stem Cell 3, 265278.CrossRefGoogle Scholar
Montgomery, R.L., Davis, C.A., Potthoff, M.J., Haberland, M., Fielitz, J., Qi, X. et al. (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes and Development 21, 17901802.CrossRefGoogle ScholarPubMed
Montgomery, R.L., Hsieh, J., Barbosa, A.C., Richardson, J.A. and Olson, E.N. (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proceedings of the National Academy of Sciences of the U.S.A 106, 78767881.CrossRefGoogle ScholarPubMed
Mori, T., Tanaka, K., Buffo, A., Wurst, W., Kuhn, R. and Gotz, M. (2006) Inducible gene deletion in astroglia and radial glia–a valuable tool for functional and lineage analysis. Glia 54, 2134.CrossRefGoogle ScholarPubMed
Morrison, B.E., Majdzadeh, N. and D'Mello, S.R. (2007) Histone deacetylases: focus on the nervous system. Cellular and Molecular Life Sciences 64, 22582269.CrossRefGoogle ScholarPubMed
Namihira, M., Kohyama, J., Abematsu, M. and Nakashima, K. (2008) Epigenetic mechanisms regulating fate specification of neural stem cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 20992109.CrossRefGoogle ScholarPubMed
Ninkovic, J., Mori, T. and Gotz, M. (2007) Distinct modes of neuron addition in adult mouse neurogenesis. Journal of Neuroscience 27, 1090610911.CrossRefGoogle ScholarPubMed
Nott, A., Watson, P.M., Robinson, J.D., Crepaldi, L. and Riccio, A. (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455, 411415.CrossRefGoogle ScholarPubMed
Novak, A., Guo, C., Yang, W., Nagy, A. and Lobe, C.G. (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147155.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Petryniak, M.A., Potter, G.B., Rowitch, D.H. and Rubenstein, J.L. (2007) Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55, 417433.CrossRefGoogle ScholarPubMed
Putignano, E., Lonetti, G., Cancedda, L., Ratto, G., Costa, M., Maffei, L. et al. (2007) Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron 53, 747759.CrossRefGoogle ScholarPubMed
Rhee, J.M., Pirity, M.K., Lackan, C.S., Long, J.Z., Kondoh, G., Takeda, J. et al. (2006) In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 44, 202218.CrossRefGoogle ScholarPubMed
Roy, K., Kuznicki, K., Wu, Q., Sun, Z., Bock, D., Schutz, G. et al. (2004) The Tlx gene regulates the timing of neurogenesis in the cortex. Journal of Neuroscience 24, 83338345.CrossRefGoogle ScholarPubMed
Salminen, A., Tapiola, T., Korhonen, P. and Suuronen, T. (1998) Neuronal apoptosis induced by histone deacetylase inhibitors. Brain Research. Molecular Brain Research 61, 203206.CrossRefGoogle ScholarPubMed
Seidenfaden, R., Desoeuvre, A., Bosio, A., Virard, I. and Cremer, H. (2006) Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Molecular and Cellular Neurosciences 32, 187198.CrossRefGoogle ScholarPubMed
Shaked, M., Weissmuller, K., Svoboda, H., Hortschansky, P., Nishino, N., Wolfl, S. et al. (2008) Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling. PLoS ONE 3, e2668.CrossRefGoogle Scholar
Shen, S., Li, J. and Casaccia-Bonnefil, P. (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. Journal of Cell Biology 169, 577589.CrossRefGoogle ScholarPubMed
Shi, Y., Chichung Lie, D., Taupin, P., Nakashima, K., Ray, J., Yu, R.T. et al. (2004) Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427, 7883.CrossRefGoogle ScholarPubMed
Siebzehnrubl, F.A., Buslei, R., Eyupoglu, I.Y., Seufert, S., Hahnen, E. and Blumcke, I. (2007) Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Experimental Brain Research 176, 672678.CrossRefGoogle ScholarPubMed
Sparmann, A. and van Lohuizen, M. (2006) Polycomb silencers control cell fate, development and cancer. Nature Reviews. Cancer 6, 846856.CrossRefGoogle ScholarPubMed
Suh, H., Consiglio, A., Ray, J., Sawai, T., D'Amour, K.A. and Gage, F.H. (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell and Stem Cell 1, 515528.CrossRefGoogle ScholarPubMed
Trivedi, C.M., Luo, Y., Yin, Z., Zhang, M., Zhu, W., Wang, T. et al. (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nature Medicine 13, 324331.CrossRefGoogle ScholarPubMed
Tsankova, N.M., Berton, O., Renthal, W., Kumar, A., Neve, R.L. and Nestler, E.J. (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience 9, 519525.CrossRefGoogle Scholar
Vecsey, C.G., Hawk, J.D., Lattal, K.M., Stein, J.M., Fabian, S.A., Attner, M.A. et al. (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. Journal of Neuroscience 27, 61286140.CrossRefGoogle ScholarPubMed
Yang, W.M., Yao, Y.L., Sun, J.M., Davie, J.R. and Seto, E. (1997) Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. Journal of Biological Chemistry 272, 2800128007.CrossRefGoogle Scholar
Ye, F., Chen, Y., Hoang, T., Montgomery, R.L., Zhao, X.H., Bu, H. et al. (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nature Neuroscience 12, 829838.CrossRefGoogle ScholarPubMed
Yoo, A.S., Staahl, B.T., Chen, L. and Crabtree, G.R. (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 460, 642646.CrossRefGoogle ScholarPubMed
Zhang, C.L., Zou, Y., He, W., Gage, F.H. and Evans, R.M. (2008) A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451, 10041007.CrossRefGoogle ScholarPubMed
Zimmermann, S., Kiefer, F. and Göttlicher, M. (2007a) Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Research 67, 18.CrossRefGoogle ScholarPubMed
Zimmermann, S., Kiefer, F., Prudenziati, M., Spiller, C., Hansen, J., Floss, T. et al. (2007b) Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Research 67, 90479054.CrossRefGoogle ScholarPubMed
Zupkovitz, G., Tischler, J., Posch, M., Sadzak, I., Ramsauer, K., Egger, G. et al. (2006) Negative and positive regulation of gene expression by mouse histone deacetylase 1. Molecular and Cellular Biology 26, 79137928.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Jawerka supplementary material

Figure S1-S12.pdf

Download Jawerka supplementary material(PDF)
PDF 2 MB