ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Hepta-Mutant Staphylococcus aureus Sortase A (SrtA7m) as a Tool for in Vivo Protein Labeling in Caenorhabditis elegans

View Author Information
Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
Department of Biology, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
Cite this: ACS Chem. Biol. 2017, 12, 3, 664–673
Publication Date (Web):January 18, 2017
https://doi.org/10.1021/acschembio.6b00998
Copyright © 2017 American Chemical Society

    Article Views

    1917

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    In vivo protein ligation is of emerging interest as a means of endowing proteins with new properties in a controlled fashion. Tools to site-specifically and covalently modify proteins with small molecules, peptides, or other proteins in living cells are few and far between. Here, we describe the development of a Staphylococcus aureus sortase (SrtA)-based protein ligation approach for site-specific conjugation of fluorescent dyes and ubiquitin (Ub) to modify proteins in Caenorhabditis elegans. Hepta-mutant SrtA (SrtA7m) expressed in C. elegans is functional and supports in vitro sortase reactions in a low-Ca2+ environment. Feeding SrtA7m-expressing C. elegans with small peptide-based probes such as (Gly)3- biotin or (Gly)3-fluorophores enables in vivo target protein modification. SrtA7m also catalyzes the circularization of suitably modified linear target proteins in vivo and allows the installation of F-box domains on targets to induce their degradation in a ubiquitin-dependent manner. This is a noninvasive method to achieve in vivo protein labeling, protein circularization, and targeted degradation in C. elegans. This technique should improve our ability to monitor and alter the function of intracellular proteins in vivo.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.6b00998.

    • Figures showing immunoblot analysis, SrtA7m-HA expression, protein labeling, small nucleophile reaction substrates, and inducible protein degradation. (PDF)

    • A table showing C. elegans proteins containing an LPXTG motif. (XLSX)

    • A table showing hypothetical fusion proteins. (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 39 publications.

    1. Sebastian Kiehstaller, George H. Hutchins, Alessia Amore, Alan Gerber, Mohamed Ibrahim, Sven Hennig, Saskia Neubacher, Tom N. Grossmann. Bicyclic Engineered Sortase A Performs Transpeptidation under Denaturing Conditions. Bioconjugate Chemistry 2023, 34 (6) , 1114-1121. https://doi.org/10.1021/acs.bioconjchem.3c00151
    2. Louise Bryan, Saurabh Awasthi, Yuanjie Li, Peter Niraj Nirmalraj, Sandor Balog, Jerry Yang, Michael Mayer. Site-Specific C-Terminal Fluorescent Labeling of Tau Protein. ACS Omega 2022, 7 (50) , 47009-47014. https://doi.org/10.1021/acsomega.2c06139
    3. Robert E. Thompson, Tom W. Muir. Chemoenzymatic Semisynthesis of Proteins. Chemical Reviews 2020, 120 (6) , 3051-3126. https://doi.org/10.1021/acs.chemrev.9b00450
    4. Yueying Li, Yong Yang, Chun-yang Zhang. Visualization and Quantification of Sortase Activity at the Single-Molecule Level via Transpeptidation-Directed Intramolecular Förster Resonance Energy Transfer. Analytical Chemistry 2018, 90 (21) , 13007-13012. https://doi.org/10.1021/acs.analchem.8b03716
    5. Rebecca F. Wissner, Angela Steinauer, Susan L. Knox, Alexander D. Thompson, Alanna Schepartz. Fluorescence Correlation Spectroscopy Reveals Efficient Cytosolic Delivery of Protein Cargo by Cell-Permeant Miniature Proteins. ACS Central Science 2018, 4 (10) , 1379-1393. https://doi.org/10.1021/acscentsci.8b00446
    6. Thibault J. Harmand, Djenet Bousbaine, Alix Chan, Xiaohong Zhang, David R. Liu, James P. Tam, Hidde L. Ploegh. One-Pot Dual Labeling of IgG 1 and Preparation of C-to-C Fusion Proteins Through a Combination of Sortase A and Butelase 1. Bioconjugate Chemistry 2018, 29 (10) , 3245-3249. https://doi.org/10.1021/acs.bioconjchem.8b00563
    7. Zhi Zou, Yu Ji, Ulrich Schwaneberg. Empowering Site‐Specific Bioconjugations In Vitro and In Vivo : Advances in Sortase Engineering and Sortase‐Mediated Ligation. Angewandte Chemie International Edition 2024, 63 (12) https://doi.org/10.1002/anie.202310910
    8. Zoe L. P. Arnott, Holly E. Morgan, Kristian Hollingsworth, Charlotte M. E. Stevenson, Lawrence J. Collins, Alexandra Tamasanu, Darren C. Machin, Jonathan P. Dolan, Tomasz P. Kamiński, Gemma C. Wildsmith, Daniel J. Williamson, Isabelle B. Pickles, Stuart L. Warriner, W. Bruce Turnbull, Michael E. Webb. Quantitative N‐ or C‐Terminal Labelling of Proteins with Unactivated Peptides by Use of Sortases and a d ‐Aminopeptidase. Angewandte Chemie 2024, 136 (8) https://doi.org/10.1002/ange.202310862
    9. Zoe L. P. Arnott, Holly E. Morgan, Kristian Hollingsworth, Charlotte M. E. Stevenson, Lawrence J. Collins, Alexandra Tamasanu, Darren C. Machin, Jonathan P. Dolan, Tomasz P. Kamiński, Gemma C. Wildsmith, Daniel J. Williamson, Isabelle B. Pickles, Stuart L. Warriner, W. Bruce Turnbull, Michael E. Webb. Quantitative N‐ or C‐Terminal Labelling of Proteins with Unactivated Peptides by Use of Sortases and a d ‐Aminopeptidase. Angewandte Chemie International Edition 2024, 63 (8) https://doi.org/10.1002/anie.202310862
    10. Léna Carmès, Guillaume Bort, François Lux, Léa Seban, Paul Rocchi, Zeinaf Muradova, Agnès Hagège, Laurence Heinrich-Balard, Frédéric Delolme, Virginie Gueguen-Chaignon, Charles Truillet, Stephanie Crowley, Elisa Bello, Tristan Doussineau, Michael Dougan, Olivier Tillement, Jonathan D. Schoenfeld, Needa Brown, Ross Berbeco. AGuIX nanoparticle-nanobody bioconjugates to target immune checkpoint receptors. Nanoscale 2024, 16 (5) , 2347-2360. https://doi.org/10.1039/D3NR04777F
    11. Zhi Zou, Yu Ji, Ulrich Schwaneberg. Empowering Site‐Specific Bioconjugations In Vitro and In Vivo : Advances in Sortase Engineering and Sortase‐Mediated Ligation. Angewandte Chemie 2023, https://doi.org/10.1002/ange.202310910
    12. Eugene M. Obeng, Alex J. Fulcher, Kylie M. Wagstaff. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnology Advances 2023, 64 , 108108. https://doi.org/10.1016/j.biotechadv.2023.108108
    13. Suresh E. Kurhade, Patrick Ross, Fei Philip Gao, Mark P. Farrell. Lectin Drug Conjugates Targeting High Mannose N‐Glycans. ChemBioChem 2022, 23 (19) https://doi.org/10.1002/cbic.202200266
    14. Jorian J Sepers, Noud H M Verstappen, An A Vo, James Matthew Ragle, Suzan Ruijtenberg, Jordan D Ward, Mike Boxem, . The mIAA7 degron improves auxin-mediated degradation in Caenorhabditis elegans. G3 Genes|Genomes|Genetics 2022, 12 (10) https://doi.org/10.1093/g3journal/jkac222
    15. Chong Zuo, Ruichao Ding, Xiangwei Wu, Yuanxia Wang, Guo‐Chao Chu, Lu‐Jun Liang, Huasong Ai, Ze‐Bin Tong, Junxiong Mao, Qingyun Zheng, Tian Wang, Zichen Li, Lei Liu, Demeng Sun. Thioester‐Assisted Sortase‐A‐Mediated Ligation. Angewandte Chemie 2022, 134 (28) https://doi.org/10.1002/ange.202201887
    16. Chong Zuo, Ruichao Ding, Xiangwei Wu, Yuanxia Wang, Guo‐Chao Chu, Lu‐Jun Liang, Huasong Ai, Ze‐Bin Tong, Junxiong Mao, Qingyun Zheng, Tian Wang, Zichen Li, Lei Liu, Demeng Sun. Thioester‐Assisted Sortase‐A‐Mediated Ligation. Angewandte Chemie International Edition 2022, 61 (28) https://doi.org/10.1002/anie.202201887
    17. Wen-Hao Wu, Jianwen Guo, Longshuai Zhang, Wen-Bin Zhang, Weiping Gao. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chemical Biology 2022, 3 (7) , 815-829. https://doi.org/10.1039/D1CB00246E
    18. Melody Gao, D. Alex Johnson, Isabel M. Piper, Hanna M. Kodama, Justin E. Svendsen, Elise Tahti, Frederick Longshore‐Neate, Brandon Vogel, John M. Antos, Jeanine F. Amacher. Structural and biochemical analyses of selectivity determinants in chimeric Streptococcus Class A sortase enzymes. Protein Science 2022, 31 (3) , 701-715. https://doi.org/10.1002/pro.4266
    19. Hongfei Jiang, Wujun Chen, Jie Wang, Renshuai Zhang. Selective N-terminal modification of peptides and proteins: Recent progresses and applications. Chinese Chemical Letters 2022, 33 (1) , 80-88. https://doi.org/10.1016/j.cclet.2021.06.011
    20. Poonam Kumari, Sujoy Bowmik, Sudipto Kumar Paul, Bidisha Biswas, Sanjay K. Banerjee, Upadhyayula Surayanarayana Murty, Velayutham Ravichandiran, Utpal Mohan. Sortase A: A chemoenzymatic approach for the labeling of cell surfaces. Biotechnology and Bioengineering 2021, 118 (12) , 4577-4589. https://doi.org/10.1002/bit.27935
    21. Suresh E. Kurhade, Jack D. Weiner, Fei Philip Gao, Mark P. Farrell. Functionalized High Mannose‐Specific Lectins for the Discovery of Type I Mannosidase Inhibitors. Angewandte Chemie 2021, 133 (22) , 12421-12426. https://doi.org/10.1002/ange.202101249
    22. Suresh E. Kurhade, Jack D. Weiner, Fei Philip Gao, Mark P. Farrell. Functionalized High Mannose‐Specific Lectins for the Discovery of Type I Mannosidase Inhibitors. Angewandte Chemie International Edition 2021, 60 (22) , 12313-12318. https://doi.org/10.1002/anie.202101249
    23. Brecht Driesschaert, Lucas Mergan, Liesbet Temmerman. Conditional gene expression in invertebrate animal models. Journal of Genetics and Genomics 2021, 48 (1) , 14-31. https://doi.org/10.1016/j.jgg.2021.01.005
    24. Clara L. Frazier, Amy M. Weeks. Engineered peptide ligases for cell signaling and bioconjugation. Biochemical Society Transactions 2020, 48 (3) , 1153-1165. https://doi.org/10.1042/BST20200001
    25. Shinji Sueda. Enzyme-based protein-tagging systems for site-specific labeling of proteins in living cells. Microscopy 2020, 69 (3) , 156-166. https://doi.org/10.1093/jmicro/dfaa011
    26. Marco Cavallari. Rapid Antigen and Antibody-Like Molecule Discovery by Staphylococcal Surface Display. 2020, 79-94. https://doi.org/10.1007/978-1-4939-9853-1_5
    27. Chen-chen Li, Ying Li, Yan Zhang, Chun-yang Zhang. Single-molecule fluorescence resonance energy transfer and its biomedical applications. TrAC Trends in Analytical Chemistry 2020, 122 , 115753. https://doi.org/10.1016/j.trac.2019.115753
    28. Hui Xie, Xu Nie, Yonghua Zhan, Qi Zeng, Xueli Chen, Dan Chen. The antimicrobial peptide Brevinin-2ISb enhances the innate immune response against methicillin-resistant Staphylococcus aureus by activating DAF-2/DAF-16 signaling in Caenorhabditis elegans, as determined by in vivo imaging. Journal of Bio-X Research 2020, 3 (4) , 205-218. https://doi.org/10.1097/JBR.0000000000000079
    29. Michael A Q Martinez, Brian A Kinney, Taylor N Medwig-Kinney, Guinevere Ashley, James M Ragle, Londen Johnson, Joseph Aguilera, Christopher M Hammell, Jordan D Ward, David Q Matus. Rapid Degradation of Caenorhabditis elegans Proteins at Single-Cell Resolution with a Synthetic Auxin. G3 Genes|Genomes|Genetics 2020, 10 (1) , 267-280. https://doi.org/10.1534/g3.119.400781
    30. Magdalena Wójcik, Susana Vázquez Torres, Wim J Quax, Ykelien L Boersma. Sortase mutants with improved protein thermostability and enzymatic activity obtained by consensus design. Protein Engineering, Design and Selection 2019, 32 (12) , 555-564. https://doi.org/10.1093/protein/gzaa018
    31. Jeremy Nance, Christian Frøkjær-Jensen. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019, 212 (4) , 959-990. https://doi.org/10.1534/genetics.119.301506
    32. Xiaolin Dai, Alexander Böker, Ulrich Glebe. Broadening the scope of sortagging. RSC Advances 2019, 9 (9) , 4700-4721. https://doi.org/10.1039/C8RA06705H
    33. Matthew R. Arkenberg, Dustin M. Moore, Chien-Chi Lin. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation. Acta Biomaterialia 2019, 83 , 83-95. https://doi.org/10.1016/j.actbio.2018.11.011
    34. Macarena Fritz Kelly. Peptide Ligases. Materials and Methods 2019, 9 https://doi.org/10.13070/mm.en.9.2795
    35. Yi Zhang, Keun-Young Park, Kiall F. Suazo, Mark D. Distefano. Recent progress in enzymatic protein labelling techniques and their applications. Chemical Society Reviews 2018, 47 (24) , 9106-9136. https://doi.org/10.1039/C8CS00537K
    36. Novalia Pishesha, Jessica R. Ingram, Hidde L. Ploegh. Sortase A: A Model for Transpeptidation and Its Biological Applications. Annual Review of Cell and Developmental Biology 2018, 34 (1) , 163-188. https://doi.org/10.1146/annurev-cellbio-100617-062527
    37. Vijaykumar S. Pawale, Prity Yadav, Rajendra P. Roy. Facile One‐Step Assembly of Bona Fide SUMO Conjugates by Chemoenzymatic Ligation. ChemBioChem 2018, 19 (11) , 1137-1141. https://doi.org/10.1002/cbic.201800090
    38. Matthew R. Arkenberg, Chien-Chi Lin. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels. Biomater. Sci. 2017, 5 (11) , 2231-2240. https://doi.org/10.1039/C7BM00691H
    39. Shaohe Wang, Ngang Heok Tang, Pablo Lara-Gonzalez, Zhiling Zhao, Dhanya K. Cheerambathur, Bram Prevo, Andrew D. Chisholm, Arshad Desai, Karen Oegema. A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans. Development 2017, 141 https://doi.org/10.1242/dev.150094

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect