Skip to main content
Log in

Antiestrogens – Tamoxifen, SERMs and Beyond

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Estrogens play a central role in reproductive physiology. The cellular effects of estrogens are mediated by binding to nuclear receptors (ER) which activate transcription of genes involved in cellular growth control. At least two such receptors, designated ERα and ERβ, mediate these effects in conjunction with a number of coactivators. These receptors can directly interact with other members of the steroid receptor superfamily. A complex cross-talk exists between the estrogen-signaling pathways and the downstream signaling events initiated by growth factors, such as epidermal growth factor and insulin-like growth factors. Estrogens are also a causative factor in the pathogenesis of a variety of neoplastic and non-neoplastic diseases, including breast cancer, endometrial cancer, endometriosis, and uterine fibroids, among others. Antiestrogens, such as tamoxifen, are widely used for the treatment of breast cancer. Tamoxifen produces objective tumor shrinkage in advanced breast cancer, reduces the risk of relapse in women treated for invasive breast cancer, and prevents breast cancer in high-risk women. Although, initially developed as an antiestrogen, tamoxifen can also prevent postmenopausal osteoporosis as well as reduce cholesterol, due to its estrogen-agonist effects. Its estrogen-agonist activity, however, can lead to significant side-effects such as endometrial cancer and thromboembolic phenomena. This has led to the concept of “ideal” selective estrogen receptor modulators (SERMs), drugs that would have the desired, tissue selective, estrogen-agonist or -antagonist effects. Raloxifene is a SERM which has the desirable mixed agonist/antagonist effects of tamoxifen but does not cause uterine stimulation. “Pure” antiestrogens may provide very potent estrogen-antagonist drugs, but are likely to be devoid of beneficial effects on bone and lipids. Future drug development efforts should focus on developing superior SERMs that have a greater efficacy against ER-positive tumors and do not cause hot flashes or thromboembolism, and explore combination strategies to simultaneously target hormone-dependent as well as hormone-independent breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar V, Green S, Stack G, Berry M, Jin J-R, Chambon P: Functional domains of the human estrogen receptor. Cell 51: 941–951, 1987

    Google Scholar 

  2. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M: Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389: 753–758, 1997

    Google Scholar 

  3. Tora L, White J, Brou C, Tassett D, Webster N, Scheer E, Chambon P: The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59: 477–487, 1989

    Google Scholar 

  4. Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW, McDonnell DP: Human estrogen 304 receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intranolecular regions. Mot Endocrinol 8: 21–30, 1994

    Google Scholar 

  5. Webster NJG, Green S, Jin JR, Chambon P: The hormonebinding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell 54: 199–207, 1988

    Google Scholar 

  6. Berry M, Metzger D, Chambon P: Role of the two activating domains of the estrogen receptor in the cell-type and promoter-context dependent agonist activity of the antiestrogen 4-hydroxytamoxifen. EMBO J 9: 2811–2818, 1990

    Google Scholar 

  7. Webster NJG, Green S, Tasset D, Panglikitmongkol M Chambon P: The transcriptional activation function located in the hormone binding domain of the human estrogen receptor is not encoded in a single exon. EMBO J 8: 1441–1446, 1989

    Google Scholar 

  8. Norris JD, Fan DJ, Kerner SA, McDonnell DP: Identification of a third autonomous activation domain within the human estrogen receptor. Mol Endocrinol 11: 747–754, 1997

    Google Scholar 

  9. Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J: Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93: 5925–5930, 1996

    Google Scholar 

  10. Lieberman BA: The estrogen receptor activity cycle: dependence on multiple protein-protein interactions. Crit Rev Eukaryotic Gene Expression 7: 43–59, 1997

    Google Scholar 

  11. Smith CL: Cross-talk between peptide growth factor and estrogen receptor signaling pathways. Biol Reprod 58: 627–632, 1998

    Google Scholar 

  12. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–1496, 1995

    Google Scholar 

  13. Kato S, Kitamoto T, Masuhiro Y, Yanagisawa J: Molecular mechanism of a cross-talk between estrogen and growthfactor signaling pathways. Oncology 55: 5–10, 1998

    Google Scholar 

  14. Joel PB, Traish AM, Lannigans DA: Estradiol-induced phosphorylation of serine 118 is in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 273: 13317–13323, 1998

    Google Scholar 

  15. Trowbridge JM, Rogatsky I, Garabedian MJ: Regulation of estrogen receptor transcriptional enhancement by the cyclinA/ Cdk2 complex. Proc Natl Acad Sci USA 94: 10132–10137, 1997

    Google Scholar 

  16. Fawell SE, Lees JA White R, Parker MG: Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60: 953–962, 1990

    Google Scholar 

  17. Klein-Hitpass L, Schorpp M, Wagner U, Ryffel CU:An estrogen responsive element derived from the 50 flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 46: 1053–1061, 1986

    Google Scholar 

  18. Kumar V, Chambon P: The estrogen receptor binds tightly to its response element as a ligand-induced homodimer. Cell 55: 145–156, 1988

    Google Scholar 

  19. Furlow JD, Murdoch FE, Gorski J: High affinity binding of the estrogen receptor to a DNA response element does not require homodimer formation or estrogen. J Biol Chem 268: 12519–12525, 1993

    Google Scholar 

  20. Beato M, Sanchez-Pacheco A: Interaction of steroid hormone receptors with the transcription initiation complex. Endocr Rev 17: 587–609, 1996

    Google Scholar 

  21. Glass CK, Rose DW, Rosenfeld MG: Nuclear receptor coactivators. Curr Opin Cell Biol 9: 222–232, 1997

    Google Scholar 

  22. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, Bell R, Rosenthal J, Hussey C, Tran T, McClure M, Frye C, Hattier T, Phelps R, Haugen-Strano A, Katcher H, Yakumo Y, Gholami Z, Shaffer D, Bayer S, Wray C, Bogden R, Dayanath P, Ward J, Tonin P, Narod S, Bristow PK, Norris FH, Helvering L, Morrison P, Rosteck P, Lai M, Barrett JC, Lewis C, Neuhausen S, Cannon-Albright L, Wiseman R, Kamb A, Skolnick MH: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71, 1994

    Google Scholar 

  23. Fan S, Wang J-A, Yuan R, Ma Y, Meng Q, Erdos MR, Pestell RG, Yuan F, Auborn KJ, Goldberg ID, Rosen EM: BRCAI inhibition of estrogen receptor signaling in transfected cells. Science 284: 1354–1356, 1999

    Google Scholar 

  24. Yang NN, Venugopalan M, Hardikar S, Glasebrook A: Identification of an estrogen response element activated by metabolites of 17β-estradiol and raloxifene. Science 273: 1222–1225, 1996

    Google Scholar 

  25. Philips A, Chalbos D, Rochefort H: Estradiol increases and antiestrogens antagonize the growth factor-induced activator protein-1 activity in MCF-7 breast cancer cells without affecting c-fos or c-jun synthesis. J Biol Chem 268: 14103–14108, 1993

    Google Scholar 

  26. Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY, Lee JW: Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J Biol Chem 273: 16651–16654, 1998

    Google Scholar 

  27. Power RF, Lydon JP, Conneely OM, O'Malley BW: Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 252: 1546–1547, 1991

    Google Scholar 

  28. Prall OWJ, Sarcevic B, Musgrove EA, Watts CKW, Sutherland RL: Estrogen-induced activation of CDK4 and CDK2 during G(1>S phase progression is accompanied by increased cyclin D1 expression and decreased cyclindependent kinase inhibitor association with cyclin E-CDK2.J Biol Chem 272: 10882–10894, 1997

    Google Scholar 

  29. Watts CKW, Sweeney KJE, Walters A, Musgrove EA, Sutherland RL: Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cells. Breast Cancer Res Treat 31: 95–105, 1994

    Google Scholar 

  30. Watts CKW, Brady A, Sarcevic B, DeFazio A, Musgrove EA, Sutherland RL: Antiestrogen inhibition of cell cycle progression in breast cancer cells is associated with inhibition of cyclin-dependent kinase activity and decreased retinoblastoma protein phosphorylation. Mol Endocrinol 9: 1804–1813, 1995

    Google Scholar 

  31. Planassilo MD, Weinberg RA: Esaogen-dependent cyclin ECDK2 activation through p21 redistribution. Mol Cell Biol 17: 4039–4069, 1997

    Google Scholar 

  32. Watts CKW, Wilcken NRC, Hamilton JA, Sweeney KJE, Musgrove EA, Sutherland RL: Mechanisms of antiestrogen, progestin/antiprogestin, and retinoid inhibition of cell cycle progression in breast cancer cells. In: Pasqualini JR, Katzenellenbogen BS (eds) Hormone Dependent Cancer. Marcel Dekker, New York, 1996, pp 119–140

    Google Scholar 

  33. Gudas JM, Nguyen H, Li T, Cowan KH: Hormone-dependent regulation of BRCAI in human breast cancer cells. Cancer Res 55: 4561–4565, 1995

    Google Scholar 

  34. Marks JR, Huper G, Vaughn JP, Davis PL, Norris J, Mc-Donnell DP, Wiseman RW, Futreal PA, Iglehart JD: BRCA1 305 expression is not directly responsive to estrogen. Oncogene 14: 115–121, 1997

    Google Scholar 

  35. Westley BR, Clayton SJ, Daws MR, Molloy CA, May FEB: Interactions between the oestrogen and insulin-like growth factor signalling pathways in the control of breast epithelial cell proliferation. Biochem Soc Symp 63: 35–44, 1998

    Google Scholar 

  36. Van der Burg B, De Groot RP, Isbrücker L, Kruijer W, De Laat SW: Oestrogen directly stimulates growth factor signal tranaduction pathways in human breast cancer cells. J Steroid Biochem Mol Biol 40: 215–221, 1991

    Google Scholar 

  37. Helle SI, Holly JMP, Tally M, Hall K, Van der Stappen J, Lonning PE: Influence of treatment with tamoxifen and change in tumor burden on the IGF-system in breast cancer patients. Int J Cancer 69: 335–339, 1996

    Google Scholar 

  38. Danielian PS, White R, Lees JA, Parker MG: Identification of a conserved region required for hormone-dependent transcriptional activation by steroid hormone receptors. EMBO J 11: 1025–1033, 1992

    Google Scholar 

  39. Grese TA, Sluka JP, Bryant HU, Cullinan GJ, Glasebrook AL, Jones CD, Matsumoto K, Palkowitz AD, Sato M, Termine JD, Winter MA, Yang NN, Dodge JA: Molecular determinants of tissue selectivity in estrogen receptor modulators. Proc Natl Acad Sci USA 94: 14105–14110, 1997

    Google Scholar 

  40. Montano MM, Ekena K, Krueger KD, Keller AL, Katzenellenbogen BS: Human estrogen receptor ligand activity inversion mutants: receptors that interpret antiestrogens as estrogens and estrogens as antiestrogens and discriminate among different antiestrogens. Mol Endocrinol 10: 230–242, 1996

    Google Scholar 

  41. Mahfoudi A, Roulet E, Dauvois S, Parker MG, Wahli W: Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc Natl Acad Sci USA 92: 4206–4210, 1995

    Google Scholar 

  42. Levenson AS, Jordan VC: The key to the antiestrogenic mechanism of raloxifene is amino acid 351 (aspartate) in the estrogen receptor. Cancer Res 58: 1872–1875, 1999

    Google Scholar 

  43. Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, Brown M: Estrogen receptor-associated proteins: Possible mediators of hormone-induced transcription. Science 264: 1455–1458, 1994

    Google Scholar 

  44. Yu CL, Driggers P, Barrera-Hernandez G, Nunez SB, Segars JH, Cheng SY: The tumor suppressor p53 is a negative regulator of estrogen receptor signaling pathways. Biochem Biophys Res Commun 239: 617–620, 1997

    Google Scholar 

  45. Hong H, Kohli K, Garabedian MJ, Stallcup MR: GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17: 2735–2744, 1997

    Google Scholar 

  46. Smith CL, Nawaz Z, O'Malley BW: Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen, Mol Endocrinoi 11: 657–666, 1997

    Google Scholar 

  47. Parker MG: Transcriptional activation by oestrogen receptors. Biochem Soc Symp 63: 45–50, 1998

    Google Scholar 

  48. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS: AIB1, a steroid receptor coactivator anplified in breast and ovarian cancer. Science 277: 965–968, 1997

    Google Scholar 

  49. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O'Malley BW: The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation functionn 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 273: 12101–12108, 1998

    Google Scholar 

  50. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB: The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domainbinding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11: 693–705, 1997

    Google Scholar 

  51. Hulka BS: Epidemiology of susceptibility to breast cancer. Prog Clin Biol Res 395: 159–174, 1996

    Google Scholar 

  52. Clark GM, Osborne CK, McGuire WL: Correlation between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol 2: 1102–1109, 1984

    Google Scholar 

  53. Beatson GT: On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet 2: 104–107, 1896

    Google Scholar 

  54. Robin PE, Dalton GA: The role of major endocrine ablation, In: Stoll BA (ed) Breast Cancer Early and Late. Yearbook Medical Publishers, Chicago, 1977, pp 147–156

    Google Scholar 

  55. Jaiyesimi IA, Buzdar AU, Decker DA, Hortobagyi GN: Use of tamoxifen for breast cancer: Twenty-eight years later. J Clin Oncol 13: 513–529, 1995

    Google Scholar 

  56. Sutherland RL, Hall RE, Taylor JW: Cell proliferation kinetics of MCF7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells. Cancer Res 43: 3998–4006, 1983

    Google Scholar 

  57. Osborne CK, Boldt DH, Clark GM, Trent JM: Effects of tamoxifen on human breast cancer cell kinetics: accumulation of cells in early G1 phase. Cancer Res 43: 3583–3585, 1983

    Google Scholar 

  58. Saloman DS, Ciardiello F, Valverius E, Saeki T, Kim N: Transforming growth factors in human breast cancer. Biomed Pharmacother 43: 661–667, 1989

    Google Scholar 

  59. Perry RR, Kang Y, Greaves BR: Relationship between tamoxifen-induced transforming growth factor b1 expression cytostasis and apoptosis in human breast cancer cells. Br J Cancer 72: 1441–1446, 1995

    Google Scholar 

  60. Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB: Evidence that transforming growth factor beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48: 417–428, 1987

    Google Scholar 

  61. Jeng MH, Ten Dijke P, Iwata KK, Jordan VC: Regulation of the levels of three transforming growth factor mRNAs by estrogen and their effects on the proliferation of human breast cancer cells. Mol Cell Endocrinol 97: 115–123, 1993

    Google Scholar 

  62. Guvakova MA, Surmacz E: Tamoxifen interferes with the insulin-like growth factor 1 receptor (IGF-1R) signaling pathway in breast cancer cells. Cancer Res 57: 2606–2610, 1997

    Google Scholar 

  63. Antoniotti S, Maggiora P, Dati C, De Bortoli M: Tamoxifen up-regulates c-erbB-2 expression in oestrogen-responsive breast cancer cells in vitro. Eur J Cancer 28: 318–321, 1992

    Google Scholar 

  64. Kleinman D, Karas M, Danilenko M, Arbeli A, Roberts CT, Jr., LeRoith D, Levy J, Sharoni Y: Stimulation of endometrial cancer cell growth by tamoxifen is associated with increased insulin-like growth factor(IGF)-I induced tyrosine phosphorylation and reduction in IGF binding proteins. Endocrinology 137: 1089–1095, 1996

    Google Scholar 

  65. Jordan VC: Effect of tamoxifen (ICI 46,474) on initiation and growth of DMBA-induced rat mammary carcinomas. Eur J Cancer 12: 419–424, 1976

    Google Scholar 

  66. Gottardis MM, Jordan VC: The antitumor action of keoxifene and tamoxifen in the N-nitrosomethylurea-induced rat mammary carcinoma model. Cancer Res 47: 4020–4024, 1987

    Google Scholar 

  67. Huynh HT, Pollak M: Insulin-like growth factor I gene expression in the uterus is stimulated by tamoxifen and inhibited by the pure antiestrogen ICI 182780. Cancer Res 53: 5585–5588, 1993

    Google Scholar 

  68. Hyder SM, Stancel GM, Chiappetta C, Murthy L, Boettger-Tong HL, Makela S: Uterine expression of vascular endothelial growth factor is increased by estradiol and tamoxifen. Cancer Res 56: 3954–3960, 1996

    Google Scholar 

  69. Noguchi S, Motomura K, Inaji Y Imaoka S, Koyama H: Down-regulation of transforming growth factor-a by tamoxifen in human breast cancer. Cancer 72: 131–136, 1993

    Google Scholar 

  70. Butta A, MacLennan K, Flanders KC, Sacks NPM, Smith I, McKinna A, Dowsett M, Wakefield LM, Sporn MB, Baum M, Colletta AA: Induction of transforming growth factor b1 in human breast cancer in vivo following tamoxifen treatment. Cancer Res 52: 4261–4264, 1992

    Google Scholar 

  71. Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H: Upregulation of estrogen receptor by tamoxifen in human breast cancer. Cancer 71: 1266–1272, 1993

    Google Scholar 

  72. Makris A, Powles TJ, Allred DC, Ashley S, Ormerod MG, Titley JC, Dowsett M: Changes in hormone receptors and proliferation markers in tamoxifen treated breast cancer patients and the relationship with response. Breast Cancer Res Treat 48: 11–20, 1998

    Google Scholar 

  73. Newton CJ, Butta A, Nicholls J, Dowsett M: Oestradiol synthesis from oestrone in malignant breast epithelial cells: Studies on a high affinity, 80 kDa form of oestradiol dehydrogenase. J Steroid Biochem Mol Biol 42: 891–900, 1992

    Google Scholar 

  74. Wakeling AE, Slater SR: Estrogen-receptor binding and biologic activity of tamoxifen and its metabolites. Cancer Treat Rep 64: 741–744, 1980

    Google Scholar 

  75. Furr BS, Jordan VC: The pharmacology and clinical uses of tamoxifen. Phannacol Ther 25: 127–205, 1984

    Google Scholar 

  76. Ward HWC: Anti-oestrogen therapy for breast cancer: a trial of tamoxifen at two dose levels. Br Med J 1: 13–14, 1973

    Google Scholar 

  77. Kiang DT, Kennedy BJ: Tamoxifen (antiestrogen) therapy in advanced breast cancer. Am Intern Med 87: 687–690, 1977

    Google Scholar 

  78. Gershanovich M, Garin A, Baltina D, Kurvet A, Kangas L, Ellmen J, Eastern European Study group: A phase III comparison of two toremifene doses to tamoxifen in postmenopausal women with advanced breast cancer. Breast Cancer Res Treat 45: 251–262, 1997

    Google Scholar 

  79. Kuss JT, Muss HB, Hoen H, Case LD: Tamoxifen as initial endocrine therapy for metastatic breast cancer: long term follow-up of two Piedmont Oncology Association (POA) trials. Breast Cancer Res Treat 42: 265–274, 1997

    Google Scholar 

  80. Berns EMJJ, vanStaveren IL, Klijn JGM, Foekens JA: Predictive value of SRC-1 for tamoxifen response of recurrent breast cancer. Breast Cancer Res Treat 48: 87–92, 1998

    Google Scholar 

  81. Elledge RM, Green S, Howes L, Clark GM, Berardo M, Allred DC, Pugh R, Ciocca D, Ravdin P, O'sullivan J, Rivkin S, Martino S, Osborne CK: bcl-2, p53, and response to tamoxifen in estrogen receptor-positive metastatic breast cancer: a Southwest Oncology Group Study. J Clin Oncol 15: 1916–1922, 1997

    Google Scholar 

  82. Borg Å, Baldetorp B, Fernö M, Killander D, Olsson H, Rydén S, Sigurdsson H: ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett 81: 137–144, 1994

    Google Scholar 

  83. Houston SJ, Plunkett TA, Barnes DM, Smith P, Rubens RD, Miles DW: Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer. Br J Cancer 79: 1220–1226, 1999

    Google Scholar 

  84. Allred DC, Ciocca D, Clark GM, Elledge RM, Green S, Hill J, Martino S, O'sullivan J, Osborne CK, Pugh R, Ravdin P: HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: A Southwest Oncology Group Study. Clin Cancer Res 4: 7–12, 1998

    Google Scholar 

  85. Foekens JA, Look MP, Peters HA, Van Putten WLJ, Portengen H, Klijn JGM: Urokinase-type plasminogen activator and its inhibitor PAI-1: Predictors of poor response to tamoxifen therapy in recwrrent breast cancer. J Natl Cancer Inst 87: 751–756, 1995

    Google Scholar 

  86. Foekens JA, Portengen H, Look MP, Van Putten WLJ, Thirion B, Bontenbal M, Klijn JGM: Relationship of PS2 with response to tamoxifen therapy in patients with recurrent breast cancer. Br J Cancer 70: 1217–1223, 1994

    Google Scholar 

  87. Newby JC, Johnston SRD, Smith IE, Dowsett M: Expression of epidermal growth factor receptor and c-erbB-2 during the development of tamoxifen resistance in human breast cancer. Clin Cancer Res 3: 1643–1651, 1997

    Google Scholar 

  88. Berns EMJJ, Klijn JGM, Van Putten WLJ, de Witte HH, Look MP, van Gelder MEM, Willman K, Portengen HW, Benraad TJ, Foekens JA: p53 protein accumulation predicts poor response to tamoxifen therapy of patients with recurrent breast cancer. J Clin Oncol 16: 121–127, 1998

    Google Scholar 

  89. Gee JMW, Willsher PC, Kenny FS, Robertson JFR, Pinder SE, Ellis IO, Nicholson RI: Endocrine response and resistance in breast cancer: A role for the transcription factor Fos. Int J Cancer 84: 54–61, 1999

    Google Scholar 

  90. Kuukasjärvi T, Kononen J, Helin H, Holli K, Isola J: Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14: 2584–2589, 1996

    Google Scholar 

  91. Early Breast Cancer Trialists' Collaborative Group: Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351: 1451–1467, 1998

    Google Scholar 

  92. Fisher B, Dignam J, Wolmark N, Wickerham DL, Fisher ER, Mamounas E, Smith R, Begovic M, Dimitrov NV, Margolese RG, Kardinal CG, Kavanah MT, Fehrenbacher L, Oishi RH: Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353: 1993–2000, 1999

    Google Scholar 

  93. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, TanChiu E, Ford L, Wolmark N: Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 90: 1371–1388, 1998

    Google Scholar 

  94. Powles T, Eeles R, Ashley S, Easton D, Chang J, Dowsett M, Tidy A, Viggers J, Davey J: Interim analysis of the incidence of breast cancer in the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet 352: 98–101, 1998

    Google Scholar 

  95. Veronesi U, Maisonneuve P, Costa A, Sacchini V, Maltoni C, Robertson C, Rotmensz N, Boyle P: Prevention of breast cancer with tamoxifen: preliminary findings from the Italian randomised trial among hysterectomized women. Lancet 352: 93–97, 1998

    Google Scholar 

  96. Gotfredsen A, Christiansen C, Palshof T: The effect of tamoxifen on bone mineral content in premenopausal women with breast cancer. Cancer 53: 853–857, 1984

    Google Scholar 

  97. Pritchard KI: Is tamoxifen effective in prevention of breast cancer? Lancet 352: 80–81, 1998

    Google Scholar 

  98. Karp SE, Tonin PN, Begin LR, Martinez JJ, Zhang JC, Pollak MN, Foulkes WD: Innuence of BRCA1 mutations on nuc307 lear grade and estrogen receptor status of breast carcinoma in Ashkenazi Jewish women. Cancer 80: 435–441, 1997

    Google Scholar 

  99. Loman N, Johannsson O, Bendahl PO, Borg A, Ferno M, Olsson H: Steroid receptors in hereditary breast carcinomas associated with BRCA1 or BRCA2 mutations or unknown susceptibility genes. Cancer 83: 310–319, 1998

    Google Scholar 

  100. Jordan VC, Fritz NF, Langan-Fahey S, Thompson M, Tormey DC: Alteration of endocrine parameters in premenopausal women with breast cancer during long-term adjuvant therapy with tamoxifen as the single agent. J Natl Cancer Inst 83: 1488–1491, 1991

    Google Scholar 

  101. Groom GV, Griffiths K: Effects of the anti-oestrogen tamoxifen on plasma levels of luteinizing hormone, follicle stimulating hormone, prolactin, oestradiol and progesterone in normal pre-menopausal women. J Endocrinol 70: 421–428, 1976

    Google Scholar 

  102. Tewari K, Bonebrake RG, Asrat T, Shanberg AM: Ambiguous genitalia in infant exposed to tamoxifen in utero. Lancet 350: 183–183, 1997

    Google Scholar 

  103. Cohen I, Figer A, Tepper R, Shapira J, Altaras MM, Yigael D, Beyth Y: Ovarian overstimulation and cystic formation in premenopausal tamoxifen exposure: Comparison between tamoxifen-treated and nontreated breast cancer patients. Gynecol Oncol 72: 202–207, 1999

    Google Scholar 

  104. Mourits MJE, Devries EGE, Willemse PHB, tenHoor KA, Hollema H, Sluiter WJ, Debruijn HWA, Vanderzee AGJ: Ovarian cysts in women receiving tamoxifen for breast cancer.Br J Cancer 79: 1761–1764, 1999

    Google Scholar 

  105. Jordan VC, Fritz NF, Tormey DC: Endocrine effects of adjuvant chemotherapy and long-term tamoxifen administration on node-positive patients with breast cancer. Cancer Res 47: 624–630, 1987

    Google Scholar 

  106. Friedrich M, Mink D, VillenaHeinsen C, Wollhermann A, Schmidt W: Tamoxifen and proliferation of vaginal and cervical epithelium in postmenopausal women with breast cancer. Eur J Obstet Gynecol Reprod Biol 80: 221–225, 1998

    Google Scholar 

  107. Pollak MN, Huynh HT, Lefebvre SP: Tamoxifen reduces serum insulin-like growth factor I (IGF-I). Breast Cancer Res Treat 22: 91–100, 1992

    Google Scholar 

  108. Lonning PE, Hall K, Aakvaag A, Lien EA: Influence of tamoxifen on plasma levels of insulin-like growth factor I and insulin-like growth factor binding protein I in breast cancer patients. Cancer Res 52: 4719–4723, 1992

    Google Scholar 

  109. Love RR, Mazess RB, Barden HS, Epstein S, Newcomb PA, Jordan VC, Carbone PP, DeMets DL: Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 326: 852–856, 1992

    Google Scholar 

  110. Kristensen B, Ejlertsen B, Dalgaard P, Larsen L, Holmegaard SN, Transbol I, Mouridsen HT: Tamoxifen and bone metabolism in postmenopausal low-risk breast cancer patients: A randomized study. J Clin Oncol 12: 992–997, 1994

    Google Scholar 

  111. Powles TJ, Hickish T, Kanis JA, Tidy A, Ashley S: Effect of tamoxifen on bone mineral density measured by dualenergy X-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol 14: 78–84, 1996

    Google Scholar 

  112. Love RR, Wiebe DA, Feyzi JM, Newcomb PA, Chappell RJ: Effects of tamoxifen on cardiovascular risk factors in postmenopausal women after 5 years of treatment. J Natl Cancer Inst 86: 1534–1539, 1995

    Google Scholar 

  113. Bush TL, Barrett-Connor E, Cowan LD, Criqui MH, Wallace RB, Suchindran CM, Tyroler HA, Rifkind BM: Cardiovascular mortality and noncontraceptive use of estrogens in women: results from the Lipid Research Clinics Program Follow-up Study. Circulation 75: 1102–1109, 1987

    Google Scholar 

  114. Rutquist LE, Matteson A: Cardiac and thromboembolic morbidity among postmenopausal women with early-stage breast cancer in a randomized trial of tamoxifen: the Stockholm Breast Cancer Study Group. J Natl Cancer Inst 85: 1398–1406, 1993

    Google Scholar 

  115. Bagdade JD, Wolter J, Subbaiah PV, Ryan W: Effects of tamoxifen treatment on plasma lipids and lipoprotein composition. J Clin Endocrinol Metab 70: 1132–1135, 1990

    Google Scholar 

  116. Rossner S, Wallgren A: Serum lipoprotein and proteins after breast cancer surgery and effects of tamoxifen. Atherosclerosis 53: 339–346, 1984

    Google Scholar 

  117. Costantino JP, Kuller LH, Ives DG, Fisher B, Dignam J: Coronary heart disease mortality and adjuvant tamoxifen therapy. J Natl Cancer Inst 89: 776–782, 1997

    Google Scholar 

  118. Early Breast Cancer Trialists' Collaborative Group: Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. 133 Randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet 339: 71–85, 1992

    Google Scholar 

  119. Bruzzi P: Tamoxifen for the prevention of breast cancer -important questions remain unanswered, and existing trials should continue. Br Med J 316: 1181–1182, 1998

    Google Scholar 

  120. Loprinzi CL, Michalak JC, Quella SK, O'Fallon JR, Hatfield AK, Nelimark RA, Dose AM, Fischer T, Johnson C, Klatt NE, Bate WW, Rospond RM, Oesterling JE: Megestrol acetate for the prevention of hot flashes. N Engl J Med 331: 347–352, 1994

    Google Scholar 

  121. Barton DL, Loprinzi CL, Quella SK, Sloan JA, Veeder MH, Egner JR, Fidler P, Stella PJ, Swan DK, Vaught NL, Novotny P: Prospective evaluation of vitamin E for hot flashes in breast cancer survivors. J Clin Oncol 16: 495–500, 1998

    Google Scholar 

  122. Han X, Liehr JG: Induction of covalent DNA adducts in rodents by tamoxifen. Cancer Res 52: 1360–1363, 1992

    Google Scholar 

  123. Hemminki K, Rajaniemi H, Lindahl B, Moberger B: Tamoxifen-induced DNA adducts in endometrial samples from breast cancer patients. Cancer Res 56: 4374–4377, 1996

    Google Scholar 

  124. Li DH, Dragan Y, Jordan VC, Wang MY, Pitot HC: Effects of chronic administration of tamoxifen and toremifene on DNA adducts in rat liver, kidney, and uterus. Cancer Res 57: 1438–1441, 1997

    Google Scholar 

  125. Terashima I, Suzuki N, Shibutani S: Mutagenic potential of a-(N2-deoxyguanosinyl)tamoxifen lesions, the major DNA adducts detected in endometrial tissues of patients treated with tamoxifen. Cancer Res 59: 2091–2095, 1999

    Google Scholar 

  126. Magriples U, Naftolin F, Schwartz PE, Carcangiu ML: Highgrade endometrial carcinoma in tamoxifen-treated breast cancer patients. J Clin Oncol 11: 485–490, 1993

    Google Scholar 

  127. Kedar RP, Bourne TH, Powles TJ, Collins WP, Ashley SE, Cosgrove DO, Campbell S: Effects of tamoxifen on uterus and ovaries of postmenopausal women in a randomised breast cancer prevention trial. Lancet 343: 1318–1321, 1994

    Google Scholar 

  128. Cohen CJ: Tamoxifen and endometrial cancer: tamoxifen effects on the human female genital tract. Semin Oncol 24: S1-55–S1-64, 1997

    Google Scholar 

  129. Lahti E, Bianco G, Kauppila A, Apaja-Sarkkinen M, Taskinen PJ, Laatikainen T: Endometrial changes in postmenopausal breast cancer patients receiving tamoxifen. Obstet Gynecol 81: 660–664, 1993

    Google Scholar 

  130. Marconi D, Exacoustos C, Cangi B, Perroni A, Zupi E, Valli E, Romanini C: Transvaginal sonographic and hysteroscopic findings in postmenopausal women receiving tamoxifen. J Am Assoc Gynecol Laparosc 4: 331–339, 1997

    Google Scholar 

  131. Cheng WF, Lin HH, Torng PL, Huang SC: Comparison of endometrial changes among symptomatic tamoxifen-treated 308 and nontreated premenopausal and postmenopausal breast cancer patients. Gynecol Oncol 66: 233–237, 1997

    Google Scholar 

  132. Tepper R, Beyth Y, Altaras MM, Zalel Y, Shapira J, Cordoba M, Cohen I: Value of sonohysterography in asymptomatic postmenopausal tamoxifen-treated patients. Gynecol Oncol 64: 386–391, 1997

    Google Scholar 

  133. Langer RD, Pierce JJ, O'Hanlan KA, Johnson SR, Espeland MA, Trabal JF, Barnabei VM, Merino MJ, Scully RE: Transvaginal ultrasonography compared with endometrial biopsy for the detection of endometrial disease. N Engl J Med 337: 1792–1798, 1997

    Google Scholar 

  134. McGonigle KF, Shaw SL, Vasilev SA, Odom-Maryon T, Roy S, Simpson JF: Abnormalities detected on transvaginal ultrasonography in tamoxifen-treated postmenopausal breast cancer patients may represent endometrial cystic atrophy. Am J Obstet Gynecol 178: 1145–1150, 1998

    Google Scholar 

  135. Bertelli G, Cosso M, Cusimano E, Delmastro L, Garrone O, Guide T, Gustavino C, Nicolo G, Rosso A, Venturini M: Tamoxifen and the endometrium: findings of pelvic ultrasound examination and endometrial biopsy in asymptomatic breast cancer patients. Breast Cancer Res Treat 47: 41–46, 1998

    Google Scholar 

  136. Fotiou S, Tserkezoglou A, Hadjieleftheriou G, Apostolikas N, Karydas I, Stravolemos K: Tamoxifen associated uterine pathology in breast cancer patients with abnormal bleeding. Anticancer Res 18: 625–630, 1998

    Google Scholar 

  137. Nevassari K, Heikkinein U, Taskinen PJ: Tamoxifen and thrombosis. Lancet 2: 946–947, 1978

    Google Scholar 

  138. Hendrick A, Sebramanian VP: Tamoxifen and thromboembolism. JAMA 243: 514–515, 1980

    Google Scholar 

  139. Fornander T, Rutqvist LE, Cedermark B, Glas U, Mattsson A, Skoog L, Somell A, Theve T, Wilking N, Askergren J, Rotstein S, Hjalmar M-L, Perbeck L: Adjuvant tamoxifen in early-stage breast cancer: Effects on intercurrent morbidity and mortality. J Clin Oncol 9: 1740–1748, 1991

    Google Scholar 

  140. Mamby CC, Love RR, Feyzi JM: Protein S and protein C level changes with adjuvant tamoxifen therapy in postmenopausal women. Breast Cancer Res Treat 30: 311–314, 1994

    Google Scholar 

  141. Enck RE, Rios CM; Tamoxifen treatment of metastatic breast cancer and antithrombin III levels. Cancer 53: 2607–2609, 1984

    Google Scholar 

  142. Auger MJ, Mackle MJ: Effects of tamoxifen in blood coagulation. Cancer 61: 1316–1319, 1988

    Google Scholar 

  143. Mayfield SG, Gorin MB: Tamoxifen-associated eye disease: a review. J Clin Oncol 14: 1018–1026, 1996

    Google Scholar 

  144. Gottardis MM, Jordan VC: Development of tamoxifenstimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res 48: 5183–5187, 1988

    Google Scholar 

  145. Canney PA, Griffiths T, Latief TN, Priestman TJ: Clinical significance of tamoxifen withdrawal response. Lancet 1: 36, 1987

    Google Scholar 

  146. Fisher B, Dignam J, Bryant J, Decillis A, Wickerham DL, Wolmark N, Constantino J, Redmond C, Fisher ER, Bowman DM, Deschenes L, Dimitrov NV, Margolese RG, Robidoux A, Shibata H, Terz J, Paterson AHG, Feldman MI, Farrar W, Evens J, Lickley HL: Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J Natl Cancer Inst 88: 1529–1542, 1996

    Google Scholar 

  147. Wiseman LR, Johnson MD, Wakeling AE, Lykkesfeldt AE, May FEB, Westley BR: Type I ICF receptor and acquired tamoxifen resistance in oestrogen-repponsive human breast cancer cells. Eur J Cancer 29A: 2256–2264, 1993

    Google Scholar 

  148. Encarnación CA, Ciocca DR, McGuire WL, Clark GM, Fuqua SAW, Osborne CK: Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 26: 237–246, 1993

    Google Scholar 

  149. Johnston SRD, Saccani-Jotti G, Smith IE, Salter J, Newby J, Coppen M, Ebbs SR, Dowsett M: Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res 55: 3331–3338, 1495

    Google Scholar 

  150. Carlson KE, Choi I, Gee A, Katzenellenbogen BS, Katzenellenbogen JA: Altered ligand binding properties and enhanced stability of a constitutively active estrogen receptor: evidence that an open pocket conformation is required for ligand interaction. Biochemistry 36: 14897–14905, 1997

    Google Scholar 

  151. Tremblay GB, Tremblay A, Labrie F, Giguere V: Ligandindependent activation of the estrogen receptors alpha and beta by mutations of a conserved tyrosine can be abolished by antiestrogens. Cancer Res 58: 877–881, 1998

    Google Scholar 

  152. Karnik PS, Kulkami S, Liu X-P, Budd GT, Bukowski RM: Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res 54: 349–353, 1994

    Google Scholar 

  153. Murphy LC, Dotzlaw H, Hamerton J, Schwarz J: Investigation of the origin of variant, truncated estrogen receptorlike mRNAs identified in some human breast cancer biopsy samples. Breast Cancer Res Treat 26: 149–161, 1993

    Google Scholar 

  154. Murphy LC, Dotzlaw H, Leygue E, Coutts A, Watson P: The pathophysiological role of estrogen receptor variants in human breast cancer. J Steroid Biochem Mol Biol 65: 175–180, 1998

    Google Scholar 

  155. Fuqua SAW, Fitzgerald SD, Chamness GC, Tandon AK, McDonnell DP, Nawaz Z, O'Malley BW, McGuire WL: Variant human breast tumor estrogen receptor with constitutive transcriptional activity. Cancer Res 51: 105–109, 1991

    Google Scholar 

  156. Castles CG, Fuqua SAW, Klotz DM, Hill SM: Expression of a constitutively active estrogen receptor variant in the estrogen receptor-negative BT-20 human breast cancer cell line. Cancer Res 53: 5934–5939, 1993

    Google Scholar 

  157. Fuqua SAW, Fitzgerald SD, Allred DC, Elledge RM, Nawaz Z, McDonnell DP, O'Malley BW, Greene GL, McGuire WL: Inhibition of estrogen receptor action by a naturally occurring variant in human breast tumors. Cancer Res 52: 483–486, 1992

    Google Scholar 

  158. Leygue E, Huang AH Murphy LC, Watson PH: Prevalence of estrogen receptor variant messenger RNAs in human breast cancer. Cancer Res 56: 4324–4327, 1996

    Google Scholar 

  159. Zhang QX, Hilsenbeck SG, Fuqua SAW, Borg A: Multiple splicing variants of the estrogen receptor are present in individual human breast tumors. J Steroid Biochem Mol Biol 59: 251–260, 1996

    Google Scholar 

  160. Daffada AAI, Johnston SRD, Smith EE, Detre S, King N, Dowsett M: Exon 5 deletion variant estrogen receptor messenger RNA expression in relation to tamoxifen resistance and progesterone receptor/pS2 status in human breast cancer. Cancer Res 55: 288–293, 1995

    Google Scholar 

  161. Lahooti H, White R, Danielian PS, Parker MG: Characterization of ligand-dependent phosphorylation of the estrogen receptor. Mol Endocrinol 8: 182–188, 1994

    Google Scholar 

  162. Astruc ME, Chabret C, Bali P, Gagne D, Pens M: Prolonged treatment of breast cancer cells with antiestrogens increases the activating protein-1-mediated response: Involvement of the estrogen receptor. Endocrinology 136: 824–832, 1995

    Google Scholar 

  163. Dumont JA, Bitoni AJ, Wallace CD, Baumann RJ, Cashman EA, Cross-Doersen DE: Progression of MCF-7 breast cancer cells to antiestrogen-resistant phenotype is accompanied by elevated levels of AP-1 DNA-binding activity. Cell Growth Differ 7: 351–359, 1996

    Google Scholar 

  164. Johnston SRD, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M, Benz CC: Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin Cancer Res 5: 251–256, 1999

    Google Scholar 

  165. Johnston SRD, Lu B, Dowsett M, Liang X, Kaufmann M, Scott GK, Osborne CK, Benz CC: Comparison of estrogen receptor DNA binding in untreated and acquired antiestrogenresistant human breast tumors. Cancer Res 57: 3723–3727, 1997

    Google Scholar 

  166. Osborne CK, Coronado E, Alfred DC, Wiebe V, DeGregorio M: Acquired tamoxifen resistance: Correlation with reduced breast tumor levels of tamoxifen and isomerization of trans-4-hydroxytamoxifen. J Natl Cancer Inst 83: 1477–1482, 1991

    Google Scholar 

  167. Osborne CK, Wiebe VJ, McGuire WL, Ciocca DR, DeGregorio MW: Tamoxifen and the isomers of 4-hydroxytamoxifen in tamoxifen-resistant tumors from breast cancer patients. J Clin Oncol 10: 304–310, 1992

    Google Scholar 

  168. Wiebe VJ, Osborne CK, McGuire WL, DeGregorio MW: Identification of estrogenic tamoxifen metabolite(s) in tamoxifen-resistant human breast tumors. J Clin Oncol 10: 990–994, 1992

    Google Scholar 

  169. Wolf DM, Langan-Fahey SM, Parker CJ, McCague R, Jordan VC: Investigation of the mechanism of tamoxifen-stimulated breast tumor growth with nonisomerizable analogues of tamoxifen and metabolites. J Natl Cancer Inst 85: 806–812, 1993

    Google Scholar 

  170. Osborne CK, Jarman M, McCague R, Coronado EB, Hilsenbeck SG, Wakeling AE: The importance of tamoxifen metabolism in tamoxifen-stimulated breast tumor growth. Cancer Chemother Pharmacol 34: 89–95, 1984

    Google Scholar 

  171. Langan-Fahey SM, Tormey DC, Jordan VC: Tamoxifen metabolites in patients on long-term adjuvant therapy for breast cancer. Eur J Cancer 26: 883–888, 1990

    Google Scholar 

  172. Dorssers LCJ, van Agthoven T, Dekker A, Van Agthoven TLA, Kok EM: Induction of antiestrogen resistance in human breast cancer cells by random insertional mutagenesis using defective retroviruses: Identification of bcar-1, a common integration site. Mol Endocrinol 7: 870–878, 1993

    Google Scholar 

  173. van Agthoven T, Van Agthoven TLA, Dekker A, van der Spek PJ, Vreede L, Dorssers LCJ: Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J 17: 2799–2808, 1998

    Google Scholar 

  174. Gradishar WJ, Jordan VC: Clinical potential of new antiestrogens. J Clin Oncol 15: 840–852, 1997

    Google Scholar 

  175. McNeil C: In search of the perfect SERM: Beyond tamoxifen and raloxifene. J Natl Cancer Inst 90: 956–957, 1998

    Google Scholar 

  176. Kangas L, Neiminen A-L, Bianco G, Gronroos M, Kattio S, Karjalainen A, Perilla M, Sodervall M, Tiovola R: A new triphenylethylene compound Fc-1157A. II antitumor effects. Cancer Chemother Pharmacol 17: 109–113, 1986

    Google Scholar 

  177. Hard GC, Iatropoulos MJ, Jordan K, Radi L, Kaltenberg OP, Imondi AR, Williams GM: Major differences in the hepatocarcinogenicity and DNA adduct forming ability between toremifene and tamoxifen in female Crl:CD (BR) rats. Cancer Res 53: 4534–4541, 1993

    Google Scholar 

  178. Pyrhonen S, Valavaara R, Modig H, Pawlicki M, Pienkowski T, Gundersen S, Bauer J, Westman G, Lundgren S, Bianco G, Mella O, Nilsson I, Hietanen T, Hindy I, Vuorinen J, Hajba A: Comparison of toremifene and tamoxifen in post-menopausal patients with advanced breast cancer: a randomized doubleblind, the "nordic" phase III study. Br J Cancer 76: 270–277, 1997

    Google Scholar 

  179. Hayes DF, Van Zyl JA, Hacking A, Goedhals L, Bezwoda WR, Mailliard JA, Jones SE, Vogel CL, Berris RF, Shemano I, Schoenfelder J: Randomized comparison of tamoxifen and two separate doses of toremifene in postmenopausal patients with metastatic breast cancer. J Clin Oncol 13: 2556–2566, 1995

    Google Scholar 

  180. Vogel CL, Shemano I, Schoenfelder J, Gams RA, Green MR: Multicenter phase II efficacy trial of toremifene in tamoxifenrefractory patients with advanced breast cancer. J Clin Oncol 11: 345–350, 1993

    Google Scholar 

  181. O'Regan RM, Cisneros A, England GM, MacGregor JI, Muenznar HD, Assikis VJ, Bilimoria MM, Piette M, Dragan YP, Pitot HC, Chatterton R, Jordan VC: Effects of the antiestrogens tamoxifen, toremifene, and ICI 182,780 on endometrial cancer growth. J Natl Cancer Inst 90: 1552–1558, 1998

    Google Scholar 

  182. Tomas E, Kauppila A, Blanco G, Apaja-Sarkkinen M, Laatikainen T: Comparison between the effects of tamoxifen and toremifene on the uterus in postmenopausal breast cancer patients. Gynecol Oncol 59: 241–266, 1995

    Google Scholar 

  183. Tonetti DA, O'Regan R, Tanjore S, England G, Jordan VC: Antiestrogen stimulated human endometrial cancer growth: Laboratory and clinical considerations. J Steroid Biochem Mol Biol 65: 181–189, 1998

    Google Scholar 

  184. Marttunen MB, Hietanen P, Tiitinen A, Ylikorkala O: Comparison of effects of tamoxifen and toremifene on bone biochemistry and bone mineral density in postmenopausal breast cancer patients. J Clin Endocrinol Metab 83: 1158–1162, 1998

    Google Scholar 

  185. Buzdar AU, Hortobagyi GN: Tamoxifen and tamoxifene in breast cancer: comparison of safety and efficacy. J Clin Oncol 16: 348–353, 1998

    Google Scholar 

  186. Hasmann M, Rattel B, Loser R: Preclinical data for droloxifene. Cancer Lett 84: 101–116, 1994

    Google Scholar 

  187. Rauschning W, Pritchard KI: Droloxifene, a new antiestrogen: Its role in metastatic breast cancer. Breast Cancer Res Treat 31: 83–94, 1994

    Google Scholar 

  188. Chander SK, McCague R, Luqmani Y, Newton C, Dowsett M, Jarman M, Coombes RC: Pyrrolidino-4-iodotamoxifen and 4-iodotamoxifen, new analogues of the antiestrogen tamoxifen for the treatment of breast cancer. Cancer Res 51: 5851–5858, 1991

    Google Scholar 

  189. Pace P, Jarman M, Phillips D, Hewer A, Bliss J, Coombes RC: Idoxifene is equipotent to tamoxifen in inhibiting mammary carcinogenesis but forms lower levels of hepatic DNA adducts. Br J Cancer 76: 700–704, 1997

    Google Scholar 

  190. Johnston SRD, Riddler S, Haynes BP, A'Hern R, Smith IE, Jarman M, Dowsett M: The novel anti-oestrogen idoxifene inhibits the growth of human MCF-7 breast cancer xenografts and reduces the frequency of acquired anti-oestrogen resistance. Br J Cancer 75: 804–809, 1997

    Google Scholar 

  191. Coombes RC, Haynes BP, Dowsett M, Quigley M, English J, Judson IR, Griggs LJ, Potter GA, McCague R, Jarman M: Idoxifene: Report of a phase I study in patients with metastatic breast cancer. Cancer Res 55: 1070–1074, 1995

    Google Scholar 

  192. Brünner N, Frandsen TL, Holst-Hansen C, Bei M, Thompson EW, Wakeling AE, Lippman ME, Clarke R: MCF7/LCC2: 310 A 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Res 53: 3229–3232, 1993

    Google Scholar 

  193. Gottardis MM, Jiang SY, Jeng MH, Jordan VC: Inhibition of tamoxifen-stimulated growth of an MCF-7 tumor variant in athymic mice by novel steroidal antiestrogens. Cancer Res 49: 4090–4093, 1989

    Google Scholar 

  194. Osborne CK, Coronado-Heinsohn EB, Hilsenbeck SG, Mc-Cue BL, Wakeling AE, McClelland RA, Manning DL, Nicholson RI: Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. J Natl Cancer Inst 87: 746–750, 1995

    Google Scholar 

  195. Salerno M, Sisci D, Mauro L, Guvakova MA, Ando S, Surmacz E: Insulin receptor substrate 1 is a target for the pure antiestrogen ICI 182,780 in breast cancer cells. Int J Cancer 81: 299–304, 1999

    Google Scholar 

  196. Howell A, DeFriend DJ, Robertson JFR, Blamey RW, Anderson L, Anderson E, Sutcliffe FA, Walton P: Pharmacokinetics, pharmacological and anti-tumour effects of the specific antioestrogen ICI 182780 in women with advanced breast cancer. Br J Cancer 74: 300–308, 1996

    Google Scholar 

  197. Sibonga JD, Dobnig H, Harden RM, Turner RT: Effect of the high-affinity estrogen receptor ligand ICI 182,780 on the rat tibia. Endocrinology 139: 3736–3742, 1998

    Google Scholar 

  198. Clemens JA, Bennett DR, Black LJ, Jones CD: Effects of a new antiestrogen, keoxifene (LY156758), on growth of carcinogen-induced mammary tumors and on LH and prolactin levels. Life Sci 32: 2875, 1983

    Google Scholar 

  199. Buzdar AU, Marcus C, Holmes F, Hug V, Hortobagyi G: Phase II evaluation of Ly156758 in metastatic breast cancer. Oncology 45: 344–345, 1988

    Google Scholar 

  200. Black LJ, Sato M, Rowley ER, Magee DE, Bekele A, Williams DC, Cullinan GJ, Bendele R, Kauffman RF, Bensch WR, Frolik CA, Termine JD, Bryant HU: Raloxifene (LY139481 HCl) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 93: 63–69, 1994

    Google Scholar 

  201. Delmas PD, Bjarnson NH, Mitlak BH, Ravoux AC, Shah AS, Huster WJ, Draper M, Christiansen C: Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 337: 1641–1647, 1997

    Google Scholar 

  202. Cummings SR, Eckert S, Krueger KA, Grady D, Powles TJ, Cauley JA, Norton L, Nickelsen T, Bjarnason NH, Morrow M, Lippman ME, Black D, Glusman JE, Costa A, Jordan VC: The effect of raloxifene on risk of breast cancer in postmenopausal women -Results from the MORE trial. JAMA 281: 2189–2197, 1999

    Google Scholar 

  203. Cummings SR, Norton L, Eckert S, Grady D, Cauley J, Knickerbocker R, Black DM, Nickelsen T, Glusman J, Krueger K: Raloxifene reduces the risk of breast cancer and may decrease the risk of endometrial cancer in postmenopausal women. Two year findings from the Multiple Outcomes of Raloxifene Evaluation (MORE) trial. Proc Am Soc Clin Oncol 17: 2a(Abstract), 1998

  204. Sato M, Turner CH, Wang TY, Adrian MD, Rowley E, Bryant HU: LY353381.HCl: A novel raloxifene analog with improved SERM potency and efficacy in vivo. J Pharmacol Exp Therapeutics 287: 1–7, 1998

    Google Scholar 

  205. Sporn M, Suh N, Peer C, Williams C, Roebuck B, Glasebrook A, Palkowitz A, Bryant M, Sato M, Yang N, Fuchs-Young R: LY353381.HCl, a new benzothiophene for chemoprevention of breast cancer (Abstract). Proc Am Assoc Cancer Res 38: 3538, 1997

    Google Scholar 

  206. Luo SQ, Labrie C, Belanger A, Candas B, Labrie F: Prevention of development of dimethylbenz(a)anthracene (DMBA)-induced mammary tumors in the rat by the new nonsteroidal antiestrogen EM-800 (SCH57050). Breast Cancer Res Treat 49: 1–11, 1998

    Google Scholar 

  207. Simard J, Labrie C, Belanger A, Gauthier S, Singh SM, Merand Y, Labrie F: Characterization of the effects of the novel non-steroidal antiestrogen EM-800 on basal and estrogeninduced proliferation of T-47D, ZR-75-1 and MCF-7 human breast cancer cells in vitro. Int J Cancer 73: 104–112, 1997

    Google Scholar 

  208. Couillard S, Gutman M, Labrie C, Belanger A, Candas B, Labrie F: Comparison of the effects of the antiestrogens EM-800 and tamoxifen on the growth of human breast ZR-75-1 cancer xenografts in nude mice. Cancer Res 58: 60–64, 1998

    Google Scholar 

  209. Sourla A, Luo S, Labrie C, Belanger A, Labrie F: Morphological changes induced by 6-month treatment of intact and ovariectomized mice with tamoxifen and the pure antiestrogen EM-800. Endocrinology 138: 5605–5617, 1997

    Google Scholar 

  210. Luo S, Martel C, Sourla A, Gauthier S, Merand Y, Belanger A, Labrie C, Labrie F: Comparative effects of 28-day treatment with the new anti-estrogen EM-800 and tamoxifen on estrogen-sensitive parameters in intact mice. Int J Cancer 73: 381–391, 1997

    Google Scholar 

  211. Tremblay A, Tremblay GB, Labrie C, Labrie F, Giguere V: EM-800, a novel antiestrogen, acts as a pure antagonist of the transcriptional functions of estrogen receptors a and b. Endocrinology 139: 111–118, 1998

    Google Scholar 

  212. Rosati RL, Jardine PD, Cameron KO, Thompson DD, Ke HZ, Toler SM, Brown TA, Pan LC, Ebbinghaus CF, Reinhold AR, Elliott NC, Newhouse BN, Tjoa CM, Sweetnam PM, Cole MJ, Arriola MW, Gauthier JW, Crawford DT, Nickerson DF, Pirie CM, Qi H, Simmons HA, Tkalcevic GT: Discovery and preclinical pharmacology of a novel, potent, nonsteroidal estrogen receptor agonist/antagonist, CP-336156, a diaryltetrahydronaphthalene. J Med Chem 41: 2928–2931, 1998

    Google Scholar 

  213. Ke HZ, Paralkar VM, Grasser WA, Crawford DT, Qi H, Simmons HA, Pirie CM, Chidsey-Frink KL, Owen TA, Smock SL, Chen HK, Jee WSS, Cameron KO, Rosati RL, Brown TA, Thompson DD: Effects of CP-336,156, a new, nonsteroidal estrogen agonist/antagonist, on bone, serum cholesterol, uterus, and body composition in rat models. Endocrinology 139: 2068–2076, 1998

    Google Scholar 

  214. Rose PG: Endometrial carcinoma. N Engl J Med 335: 640–649, 1996

    Google Scholar 

  215. Clinton GM, Hua WH: Estrogen action in human ovarian cancer. Crit Rev Oncol Hematol 25: 1–9, 1997

    Google Scholar 

  216. Marth C, Sorheim N, Kaern J, Trope C: Tamoxifen in the treatment of recurrent ovarian cancer. Int J Gynecol Cancer 7: 256–261, 1997

    Google Scholar 

  217. Danforth DN, Jr.: Hormone receptors inmalignancy. Crit Rev Oncol Hematol 12: 91–149, 1992

    Google Scholar 

  218. Rohlff C, Blagosklonny MV, Kyle E, Kesari A, Kim IY, Zelner DJ, Hakim F, Trepel J, Bergan RC: Prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase C and induction of p21(waf1/cip1). Prostate 37: 51–59, 1998

    Google Scholar 

  219. Treon SP, Teoh G, Urashima M, Ogata A, Chauhan D, Webb IJ, Anderson KC: Antiestrogens induce apoptosis of multiple myeloma cells. Blood 92: 1749–1757, 1998

    Google Scholar 

  220. Sampson LK, Vickers SM, Ying WZ, Phillips JO: Tamoxifen-mediated growth inhibition of human cholangiocarcinoma. Cancer Res 57: 1743–1749, 1997

    Google Scholar 

  221. Gershanovich MM, Moiseyenko VM, Vorobjev AV, Kapyla H, Ellmen J, Anttila M: High dose toremifene in advanced renal-cell carcinoma. Cancer Chemother Pharmacol 39: 547–551, 1997

    Google Scholar 

  222. Gelmann EP: Tamoxifen for the treatment of malignancies other than breast and endometrial carcinoma. Semin Oncol 24: S65–S70, 1997

    Google Scholar 

  223. Izes JK, Zinman LN, Larsen CR: Regression of large pelvic desmoid tumor by tamoxifen and sulindac. Urology 47: 756–759, 1996

    Google Scholar 

  224. Tonietto G, Agresta F, Libera DD, Bittesini L: Treatment of idiopathic retroperitoneal fibrosis by tamoxifen. Eur J Surg 163: 231–235, 1997

    Google Scholar 

  225. Mosselman S, Polman J, Dijkema R: ERb: Identification and characterization of a novel human estrogen receptor. FEBS Lett 392: 49–53, 1996

    Google Scholar 

  226. Enmark E, PeltoHuikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, Nordenskjold M, Gustafsson JA: Human estrogen receptor b-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 82: 4258–4265, 1997

    Google Scholar 

  227. Ogawa S, Inoue S, Watanabe T, Hiroi H, Orimo A, Hosoi T, Ouchi Y, Muramatsu M: The complete primary structure of human estrogen receptor beta (hER beta) and its heterodimerization with ER alpha in vivo and in vitro. Biochem Biophys Res Commun 243: 122–126, 1998

    Google Scholar 

  228. Pettersson K, Grandien K, Kuiper GGJM, Gustafsson JA: Mwse estrogen receptor b forms estrogen response elementbinding heterodimers with estrogen receptor a. Mol Endocrinol 11: 1486–1496, 1997

    Google Scholar 

  229. Kuiper GGJM, Gustafsson JA: The novel estrogen receptorb subtype: Potential role in the cell-and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett 410: 87–90, 1997

    Google Scholar 

  230. Cowley SM, Hoare S, Mosselman S, Parker MG: Estrogen receptors a and b form heterodimers on DNA. J Biol Chem 272: 19858–19862, 1997

    Google Scholar 

  231. Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson JA, Nilsson S: Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonistslantagonists. Mol Pharnacol 54: 105–112, 1998

    Google Scholar 

  232. Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson JA, Kushner PJ, Scanlan TS: Differential activation of estrogen receptors ERa and ERb at AP1 sites. Science 277: 1508–1510, 1997

    Google Scholar 

  233. Dotzlaw H, Leygue E, Watson PH, Murphy LC: Expression of estrogen receptor-beta in human breast tumors. J Clin Endocrinol Metab 82: 2371–2374, 1997

    Google Scholar 

  234. Dotzlaw H, Leygue E, Watson PH, Murphy LC: Estrogen receptor-beta messenger RNA expression in human breast tumor biopsies: Relationship to steroid receptor status and regulation by progestins. Cancer Res 59: 529–532, 1999

    Google Scholar 

  235. Petersen DN, Tkalcevic GT, Koza-Taylor PH, Turi TG, Brown TA: Identification of estrogen receptor b2, a functional variant of estrogen receptor b expressed in normal rat tissues. Endocrinology 139: 1082–1092, 1998

    Google Scholar 

  236. Leygue E, Dotzlaw H, Watson PH, Murphy LC: Expression of estrogen receptor beta 1, beta 2, and beta 5 messenger RNAs in human breast tissue. Cancer Res 59: 1175–1179, 1999

    Google Scholar 

  237. Fontana JA: Interaction of retinoids and tamoxifen on the inhibition of human mammary carcinoma ceil proliferation. Exp Cell Biol 55: 136–144, 1987

    Google Scholar 

  238. Ratko TA, Detrisac CJ, Dinger NM, Thomas CF, Kelloff GJ, Moon RC: Chemopreventive efficacy of combined retinoid and tamoxifen treatment following surgical excision of a primary mammary cancer in female rats. Cancer Res 49: 4472–4476, 1989

    Google Scholar 

  239. Bischoff ED, Gottardis MM, Moon TE, Heyman RA, Lamph WW: Beyond tamoxifen: The retinoid X receptor-selective ligand LGD1069 (TARGRETIN) causes complete regression of mammary carcinoma. Cancer Res 58: 479–484, 1998

    Google Scholar 

  240. Anzano MA, Peer CW, Smith JM, Mullen LT, Shrader MW, Logsdon DL, Driver CL, Brown CC, Roberts AB, Sporn MB: Chemoprevention of mammary carcinogenesis in the rat: Combined use of raloxifene and 9-cis-retinoic acid. J Natl Cancer Inst 88: 123–125, 1996

    Google Scholar 

  241. Farmer LJ, Jeong S, Kallel EA, Koch SSC, Croston GE, Flatten KS, Heyman RA, Nadzan AM: Synthesis and structureactivity relationships of potent retinoid X receptor ligands. Bioorg Med Chem 7: 2393–2398, 1997

    Google Scholar 

  242. Toma S, Isnardi L, Riccardi L, Bollag W: Induction of apoptosis in MCF-7 breast carcinoma cell line by RAR and RXR selective retinoids. Anticancer Res 18: 935–942, 1998

    Google Scholar 

  243. Evans RM, Fletcher C, Martin KJ, Mueller E, Sarraf P, Singer S, Spiegelman BM, Tontonoz P, Zhang M: Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1: 465–470, 1998

    Google Scholar 

  244. Elstner E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D, Koeffler HP: Ligands for peroxisome proliferator-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95: 8806–8811, 1998

    Google Scholar 

  245. Vink-van Wijngaarden T, Pols HAP, Buurman CJ, Van den Bemd GJCM, Dorssers LCJ, Birkenhäger JC, Van Leeuwen JPTM: Inhibition of breast cancer cell growth by combined treatment with vitamin D3 analogues and tamoxifen. Cancer Res 54: 5711–5717, 1994

    Google Scholar 

  246. Kubota T, Koshizuka K, Koike M, Uskokovic M, Miyoshi I, Koeffler NP: 19-nor-26,27-bishomo-vitamin D-3 analogs: A unique class of potent inhibitors of proliferation of prostate, breast, and hematopoietic cancer cells. Cancer Res 58: 3370–3375, 1998

    Google Scholar 

  247. Lee SK, Choi HS, Song MR, Lee MO, Lee JW: Estrogen receptor, a common interaction partner for a subset of nuclear receptors. Mol Endocrinol 12: 1184–1192, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhingra, K. Antiestrogens – Tamoxifen, SERMs and Beyond. Invest New Drugs 17, 285–311 (1999). https://doi.org/10.1023/A:1006348907994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006348907994

Navigation