Skip to main content
Log in

Conductivities of Three-Layer Human Skull

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In this study, electrical conductivities of compact, spongiosum, and bulk layers of cadaver skull were determined at varying electric fields at room temperature. Current was applied and withdrawn over the top and bottom surfaces of each sample and potential drop across different layers was measured using the four-electrode method. We developed a model, which considers of variations in skull thicknesses, to determine the conductivity of the tri-layer skull and its individual anatomical structures. The results indicate that the spongiform and the two compact layers of the skull have significantly different and inhomogeneous conductivities ranging from 0.76 ∓ .14 to 11.5 ∓ 1.8 milliS/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtari, M., McNay, D., Mandelkern, M., Teeter, B., Cline, H.E., Malik, J., Clark, G., Tatar, R., Lufkin, R., Rogers, R.L. and Sutherling, W.W. Somatosensory evoked response source localization using actual cortical surface as the spatial constraint. Brain Topography, 1994, 7: 63-69.

    Google Scholar 

  • Alberstone, C.D., Skirboll, S.L., Benzel, E.C., Sanders, J.A., Hart, B.L., Baldwin, N.G., Tessman, C.L., Davis, J.T. and Lee, R.R. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J. Neurosurg., 2000, 92(1): 79-90.

    Google Scholar 

  • Barnard, A.C.L., Duck, I.M. and Lynn, M.S. The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations. Biophys. J., 1967, 7: 443-462.

    Google Scholar 

  • Baumgartner, U., Vogel, H., Ellrich, J., Gawehn, J., Stoeter, P. and Treede, R.D. Brain electrical source analysis of primary cortical components of the tibial nerve somatosensory evoked potential using regional sources. Electroencephalogr. Clin. Neurophysiol., 1998: 108.

  • Beers, Y. Introduction to the theory of error. Addison-Wesley Publishing Company Inc. Cambridge 42, Mass., 1953.

    Google Scholar 

  • Berendse, H.W., Verbunt, J.P., Scheltens, P., van Dijk, B.W. and Jonkman, E.J. Magenetoencephalographic analysis of cortical activity in Alzheimer's disease: a pilot study. Clin. Neurophysiol., 2000, 111(4): 604-612.

    Google Scholar 

  • Breier, J.I., Simos, P.G., Zouridakis, G. and Papanicolaou, A.C. Lateralization of cerebral activation in auditory verbal and non-verbal memory tasks using magnetoencephalography. Brain Topogr., 1999a, 12(2): 89-97.

    Google Scholar 

  • Breier, J.I., Simos, P.G., Zouridakis, G., Wheless, J.W., Willmore, L.J., Constantinou, J.E.C., Maggio, W.W. and Papanicolaou, A.C. Language dominance determined by magnetic source imaging. A comparison with the Wada procedure. Neurology, 1999b, 53(2): 938-945.

    Google Scholar 

  • Buchner, H., Kauert, C. and Radermacher, I. Short-term changes of finger representation at the somatosensory cortex in humans. Neurosci. Lett., 1995, 198(1): 57-59.

    Google Scholar 

  • Buchner, H., Knoll, G., Fuchs, M., Rienacker, A., Beckmann, R., Wagner, M., Silny, J. and Pesch, J. Inverse localization of electric dipole current source in finite element models of the human head. Electroencephalogr. Clin. Neurophysiol., 1997: 102.

  • Chakkalakal, D.A. and Jouhnson, M.W. Electrical properties of compact bone. Clin. Ortho. Rel. Res., 1981, 161: 133-145.

    Google Scholar 

  • Chakkalakal, D.A., Jouhnson, M.W., Harper, R.A. and Katz, J.L. Dielectric properties of fluid-saturated bone. IEEE Trans. Biomed. Engr., 1980, 27(2): 95-100.

    Google Scholar 

  • Cohen, D., Cuffin, B.N., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G.R., Ives, J., Kennedy, J.G. and Schomer, D.L. MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol., 1990, 28: 811-817.

    Google Scholar 

  • Crouzeix, A., Yvert, B., Bertrand, O. and Pernier, J. An evaluation of dipole reconstruction accuracy with spherical and realistic head models in MEG. Clin. Neurophysiol., 1999, 110(12): 2176-2188.

    Google Scholar 

  • Cuffin, B.N., Cohen, D., Yanokuchi, K., Maniewski, R., Purcell, C., Cosgrove, M., Ives, J., Kennedy, J. and Schomer, D. Tests of EEG localization accuracy using implanted sources in the human brain. Ann. Neurol., 1991, 29: 132-138.

    Google Scholar 

  • Diekmann, V., Becker, W., Jurgens, R., Grozinger, B., Kleiser, B., Richter, H.P. and Wollinsky, K.H. Localization of epileptic foci with electric, magnetic and combined electromagnetic models. Electroencephalogr. Clin. Neurophysiol., 1998: 106.

  • Ebersole, J.S. Non-invasive pre-surgical evaluation with EEG/MEG source analysis. Electroencephalogr. Clin. Neurophysiol. Suppl., 1999, 50: 167-174.

    Google Scholar 

  • Fuchs, M., Drenckhahn, R., Wischmann, H.A. and Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed. Eng., 1998, 45(8): 980-997.

    Google Scholar 

  • Fuchs, M., Wagner, M., Wischmann, H.A., Kohler, T., Theissen, A., Drenckhahn, R. and Buchner, H. Improving source reconstruction by combining bioelectric and biomagnetic data. Electroencephalogr. Clin. Neurophysiol., 1998, 107(2): 93-111

    Google Scholar 

  • Gallen, C.C., Sobel, D.F., Waltz, T., Aung, M., Copeland, B., Schwartz, B.J., Hirschkoff, E.C. and Bloom, F.E. Noninvasive presurgical neuromagnetic mapping of somatosensory cortex. Neurosurg., 1993, 33(2): 260-268.

    Google Scholar 

  • Gallen, C.C., Tecoma, E., Iragui, V., Sobel, D.F., Schwartz, B.J. and Bloom, F.E. Magnetic source imaging of abnormal low-frequency magnetic activity in presurgical evaluations of epilepsy. Epilepsia, 1997, 38(4): 452-460.

    Google Scholar 

  • Geddes, L.A. and Baker, L.E. The specific resistance of biological material — a compendium of data for the biomedical engineer and physiologist. Med. & Biol. Eng., 1967, 5: 271-293.

    Google Scholar 

  • Geneser, F. Histologi. Munksgaard, København, 1981.

    Google Scholar 

  • Grynszpan, F. and Gezelowitz, D.B. Model studies of magnetocardiogram. Biophys. J., 1973, 13(9): 911-925.

    Google Scholar 

  • Hämäläinen, M.S. and Sarvas, J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng., 1989, 36(2): 165-171.

    Google Scholar 

  • Hari, R. and Forss, N. Magnetoencephalography in study of human somatosensory cortical processing. Philos Trans. R. Soc. Lond. B. Biol. Sci., 1999, 354(1387): 1145-1154.

    Google Scholar 

  • Hauesien, J., Bottner, A., Nowak, H., Brauer, H. and Weiller, C. The influence of conductivity changes in boundary element compartments on the forward and inverse problem in electroencephalography and magnetoencephalography. Biomed. Tech. (Berl), 44(6): 150-157.

  • Haueisen, J., Ramon, C., Eiselt, M., Brauer, H. and Nowak, H. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans., Biomed. Eng., 1997, 44(8).

  • Herrmann, C.S., Oertel, U., Wang, Y., Maess, B. and Friederici, A.D. Noise affects auditory and linguistic processing differently: an MEG study. Neuroreport, 2000, 11(2): 227-229.

    Google Scholar 

  • Hisada, K., Morioka, T., Nishio, S., Muraishi, M., Yamamoto, T. and Yoshida, T. Magnetoencephalographic analysis of periodic lateralized epileptiform discharges (PLEDs). Clin. Neurophysiol., 2000, 111(1): 122-127.

    Google Scholar 

  • Huotilainen, M., Winkler, I., Alho, K., Escera, C., Virtanen, J., Ilmoniemi, R.J., Jaaskelainen, I.P., Pekkonen, E. and Naatannen, R. Combined mapping of human auditory EEG and MEG responses. Electroencephalogr. Clin. Neurophysiol., 1998, 108(4): 370-379.

    Google Scholar 

  • Hurley, R.A., Lewine, J.D., Jones, G.M., Orrison, W.W. Jr. and Taber, K.H. Application of magnetoencephalography to the study of autism. J. Neuropsychiatry Clin. Neurosci., 2000, 12(1): 1-3.

    Google Scholar 

  • Jorgenson, D.B., Schimpf, P.H., Shen, I., Johnson, G., Bardy, G.H., Haynor, D. and Kim, Y. Predicting cardiothoracic voltage during high nergy shocks: Methodology and comparison of experimental to finite element model data. IEEE Trans. Biomed. Eng. 1995, 42(6): 559-571.

    Google Scholar 

  • Kincses, W.E., Braun, C., Kaiser, S. and Elbert, T. Modeling extended sources of event-related potentials using anatomical and physiological constraints. Hum. Brain Mapp., 1999, 8(4): 182-193.

    Google Scholar 

  • Law, S. Thickness and resistivity variations over the upper surface of the human skull. Brain Topography, 1993, 6: 99-109.

    Google Scholar 

  • Marin, G., Guerin, C., Baillet, S., Garnero, L. and Meunier, G. Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Hum. Brain Mapp., 1998, 6(4): 250-269.

    Google Scholar 

  • Mejis, J.W.H., Peters, M.J. and Oosterom, A. van. Computation of MEG's and EEG's using a realistically shaped multicompartment model of the head. Med. Biol. Engng. Comput., 1985, 23 (Suppl. Part 1): 36-37.

    Google Scholar 

  • Michel, C.M., Grave de Peralta, R., Lantz, G., Gonzalez Andino, S., Spinelli, L., Blanke, O., Landis, T. and Seeck, M. Spaciotemporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J. Clin. Neurophysiol., 1999, 1693: 239-266.

    Google Scholar 

  • Mosher, J.C. and Leahy, R.M. Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans. Biomed. Eng., 1998, 45(11): 1342-1354.

    Google Scholar 

  • Nakaura, A., Yamada, T., Goto, A., Kato. T., Ito, K., Abe, Y., Kachi, T. and Kakigi, R. Somatosensory Homunculus as drawn by MEG. Neuroimage, 1998, 7(4): 377-386.

    Google Scholar 

  • Okada, Y.C., Lahteenmaki, A. and Xu, C. Experimental analysis of distortion of magnetoencephalography signals by skull. Clin. Neurophysiol., 1999, 110(2): 230-238.

    Google Scholar 

  • Ollikainen, J.O., Vauhkonen, M., Karjalainen, P.A. and Kaipio, J.P. Effects of local skull inhomogeneities on EEG source estimation. Med. Eng. Phys., 1999, 21(3): 143-154.

    Google Scholar 

  • Pantev, C., Hoke, M., Lutkenhoner, B. and Lehnertz, K. Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science, 1989, 246(4929): 486-488.

    Google Scholar 

  • Pantev, C., Wollbrink, A., Roberts, L.E., Engelien, A. and Lutkenhoner, B. Short-term plasticity of the human auditory cortex. Brain Res., 1999, 842(1): 192-199.

    Google Scholar 

  • Papanicolaou, A.C., Simos, P.G., Brier, J.I., Zouridakis, G., Willmore, L.J., Wheless, J.W., Constantinou, J.E., Maggio, W.W. and Gormley, W.B. Magnetoencephalographic mapping of the language-specific cortex. J. Neurosurg., 1999, 90(1): 85-93.

    Google Scholar 

  • Pohlmeier, R., Buchner, H., Knoll, G., Rienäcker, A., Beckmann, R. and Pesch, J. The influence of skull — conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain Topogr., 1997, 9(3): 157-162.

    Google Scholar 

  • Reite, M., Teale, P. and Rojas, D.C. Magnetoencephalography: applications in psychiatry. Biol. Psychiatry, 1999, 45(12): 1553-1563.

    Google Scholar 

  • Ribary, U., Cappell, J., Mogilner, A., Hund-Georgiadis, M., Kronberg, E. and Llinas, R. Functional imaging of plastic changes in the human brain. Adv. Neurol., 1999, 81: 49-56.

    Google Scholar 

  • Ricci, G.B., Leoni, R., Romani, G.L., Campitelli, F., Buonomo, S. and Modena, I. 3-D neuromagnetic localization of sources of interictal activity in cases of focal epilepsy. In: H. Weinberg, G. Stroink, T. Katila (eds.), Biomagnetism: Applications and Theory. New York: Pergamon Press, 1985: 304-310.

    Google Scholar 

  • Romani, G.L., Williamson, S.J. and Kaufman, L. Tonotopic organization of the human auditory cortex. Science, 1982, 216: 1339-1340.

    Google Scholar 

  • Rose, D.F., Smith, P.D. and Sato, S. Magnetoencephalography and epilepsy research. Science, 1987, 238: 329-335.

    Google Scholar 

  • Rush, S. and Driscoll, D.A. Current distribution in the brain from surface electrodes. Anesth. Analg., 1968, 47(6): 717-723.

    Google Scholar 

  • Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol., 1987, 32(1): 11-22.

    Google Scholar 

  • Silva, C., Almeida, R., Oostendorp, T., Ducla-Soares, E., Foreid, J.P. and Pimentel, T. Interictal spike localization using a standard realistic head model: simulations and analysis of clinical data. Clin. Neurophysiol., 1999, 110(5): 846-855.

    Google Scholar 

  • Simos, P.G., Breier, J.I., Maggio, W.W., Gormley, W.B., Zouridakis, G., Willmore, L.J., Wheless, J.W., Constantinou, J.E. and Papanicolaou, A.C. Atypical temporal lobe language reprentation: MEG and intraoperative stimulation mapping correlation. Neuroreport, 1999, 10(1): 139-142.

    Google Scholar 

  • Simos, P.G., Papnicolaou, A.C., Breier, J.I., Wheless, J.W., Constantinou, J.E., Gomley, W.B. and Maggio, W.W. Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J. Neurosurg., 1999, 91(5): 787-796.

    Google Scholar 

  • Sobel, D.F., Aung, M., Otsubo, H. and Smith, M.C. Magnetoencephalography in children with Landau-Kleffner syndrome and acquired epileptic aphasia. AJNR Am. J. Neuroradiol., 2000, 21(2): 301-307.

    Google Scholar 

  • Sperling, W., Vieth, J., Martus, M., Demling, J. and Barocka, A. Spontaneous slow and fast MEG activity in male schizophrenics treated with clozapine. Psychopharmacology (Berl), 1999, 142(4): 375-382.

    Google Scholar 

  • Stock, C.J. The inverse problem in EEG and MEG with application to visual evoked responses. Thesis, 1986.

  • Stinstra, J.G. and Peters, M.J. The volume conductor may act as a temporal filter on ECG and EEG. Med. Biol. Eng. Comput., 1998, 36(6): 711-716.

    Google Scholar 

  • Sutherling, W.W., Crandall, P.H., Engel, J. Jr., Darcey, T.M., Cahan, L.D. and Barth, D.S. The magnetic field of complex partial seizures agrees with intracranial localizations. Ann. Neurol., 1987, 21(6): 548-558.

    Google Scholar 

  • Sutherling, W.W., Crandal, P.H., Darcey, D.P., Becker, M.F., Levesque, M.F. and Barth, D.S. The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology, 1988a, 38(11): 1705-1714.

    Google Scholar 

  • Sutherling, W.W., Crandall, P.H., Cahan, L.D. and Barth, D.S. The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy. Neurology, 1988b, 38(5): 778-786.

    Google Scholar 

  • Sutherling, W.W., Risinger, M.W., Crandall, P.H., Becker, D.P., Baumgartner, C., Cahan, L.D., Wilson, C. and Levesque, M.F. Focal functional anatomy of dorsolateral frontocentral seizures. Neurology, 1990, 40(1): 87-98.

    Google Scholar 

  • Sutherling, W.W., Levesque, M.F., Crandall, P.H. and Barth, D.S. Localization of partial epilepsy using magnetic and electric measurements. Epilepsia, 1991, 32,Suppl 5: S29-40.

    Google Scholar 

  • Sutherling, W.W., Levesque, M.F. and Baumgartner, C. Cortical sensory representation of the human hand: size of finger regions and nonoverlapping digit somatotopy. Neurology, 1992, 42(5): 1020-1028.

    Google Scholar 

  • Tendolkar, I., Rugg, M., Fell, J., Vogt, H., Scholz, M., Hinrichs, H. and Heinze, H.J. A magnetoencephalographic study of brain activity related to recognition memory in healthy young human subjects. Neurosci. Lett., 2000, 280(1): 69-72.

    Google Scholar 

  • Tesche, C.D. and Karhu, J. Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA, 2000, 97(2): 919-924.

    Google Scholar 

  • van den Broek, S.P., Reiders, F., Donderwinkel, M. and Peters, M.J. Volume conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol., 1998: 106.

  • Volkmann, J. Oscillations of the human sensorimotor system as revealed by magnetoencephalography. Mov. Disord., 1998, 13Suppl 3: 73-76.

    Google Scholar 

  • Wheless, J.W., Willmore, L.J., Breier, J.I., Kataki, M., Smith, J.R., King, D.W., Meador, K.J., Park, Y.D., Loring, D.W., Clifton, G.L., Baumgartner, J., Thomas, A.B., Constantinou, J.E. and Papanicolaou, A.C. A comparison of magnetoencephalography, MRI, and V-EEG in patients evaluated for epilepsy surgery. Epilepsia, 1999, 40(7): 931-941.

    Google Scholar 

  • Wood, C.C., Cohen, D., Cuffin, B.N., Yarita, M. and Allison, T. Electrical sources in the human somatosensory cortex: Identification by combined magnetic and electric potential recordings. Science, 1985, 227:1051-1053.

    Google Scholar 

  • Wood, C.C., Spencer, D.D., Allison, T., McCarthy, G., Williamson, P.D. and Goff, W.R. Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J. Neurosurgery, 1988, 68(1): 99-111.

    Google Scholar 

  • Yan, Y., Nunez, P.L. and Hart, R.T. Finite-element model of the human head: scalp potentials due to dipole sources. Med. Biol. Eng. Comput., 1991, 29: 475-481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtari, M., Bryant, H., Mamelak, A. et al. Conductivities of Three-Layer Human Skull. Brain Topogr 13, 29–42 (2000). https://doi.org/10.1023/A:1007882102297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007882102297

Navigation