Skip to main content
Log in

Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA)

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Recent sediments from two alpine lakes (> 3300 m asl) in the Colorado Front Range (USA) register marked and near-synchronous changes that are believed to represent ecological responses to enhanced atmospheric deposition of fixed nitrogen from anthropogenic sources. Directional shifts in sediment proxies include greater representations of mesotrophic diatoms and increasingly depleted δ15N values. These trends are particularly pronounced since ~ 1950, and appear to chronicle lake responses to excess N derived from agricultural and industrial sources to the east. The rate and magnitude of recent ecological changes far exceed the context of natural variability, as inferred from comparative analyses of a long core capturingthe entire 14,000-year postglacial history of one of the lakes. Nitrogen deposition to these seemingly pristine natural areas has resulted in subtle but detectable limnological changes that likely represent the beginning of a stronger response to nitrogen enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, R. B. & R. A. Smith, 1990. County level estimates of nitrogen and phosphorous fertilizer use in the United States, 1945- 1985. United States Geological Survey Open-File Report 90- 130, Reston.

  • Anderson, N. J., I. Renberg & U. Segerstrom, 1995. Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjö n, northern Sweden). J. Ecol. 83: 809–822.

    Google Scholar 

  • Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–18.

    Google Scholar 

  • Baron, J. S. & D. H. Campbell, 1997. Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin. Hydrol. Proc. 11: 783–799.

    Google Scholar 

  • Baron, J. S. & N. Caine, 2000. The temporal coherence of two Alpine lake basins of the Colorado Front Range, U.S.A. Freshwater Biol. 43: 463–476.

    Google Scholar 

  • Baron, J. S., S. A. Norton, D. R. Beeson & R. Herrman, 1985. Sediment diatom and metal stratigraphy from Rocky Mountain lakes with specific reference to atmospheric deposition. Can. J. Fish. Aquat. Sci. 43: 1350–1362.

    Google Scholar 

  • Baron, J. S., D. S. Ojima, E. A. Holland & W. J. Parton, 1994. Analysis of nitrogen saturation potential for Rocky Mountain tundra and forest: implications for aquatic ecosystems. Biogeochemistry 27: 61–82.

    Google Scholar 

  • Battarbee, R. W., 1986. Diatom analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, 527–570.

  • Brenner, M., T. J. Whitmore, J. H. Curtis, D. A. Hodell & C. L. Schelske, 1999. Stable isotope (d13C and d15N) signatures of sedimented organic mater as indicators of historical lake trophic state. J. Paleolim. 22: 205–221.

    Google Scholar 

  • Caine, N., 1995. Temporal trends in the quality of streamwater in an alpine environment: Green Lakes Valley, Colorado Front Range, USA. Geog. Ann. 77A: 207–220.

    Google Scholar 

  • Durka, W., E. D. Schulze, G. Gebauer & S. Voerkelius, 1994. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372: 765–767.

    Google Scholar 

  • Eilers, J. M., P. Kanciruk, R. A. McCord, W. S. Overton, L. Hook, D. J. Blick, D. F. Brakke, P. E. Kellar, M. S. DeHaan, M. E. Silverstein & D. H. Landers, 1987. Characteristics of lakes in the western United States. Volume II. Data compendium for selected physical and chemical variables. Report EPA 600/3–86/054b, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Fenn, M. E., M. Poth, J. D. Aber, J. S. Baron, B. T. Bormann, D. W. Johnson, A. D. Lemly, S. G. McNulty, D. F. Ryan & R. Stottlemyer, 1998. Nitrogen excess in North American ecosystems: a review of predisposing factors, geographic extent, ecosystem responses, and management strategies. Ecol. Appl. 8: 706–733.

    Google Scholar 

  • Fry, B., W. Brand, F. J. Mersch, K. Tholke & R. Garritt, 1992. Automated analysis system for coupled d13C and d15N measurements. Anal. Chem. 64: 288–291.

    Google Scholar 

  • Glew, J. R., 1989. A new trigger mechanism for sediment samplers. J. Paleolim. 2: 241–243.

    Google Scholar 

  • Gschwandtner, G., K. C. Gschwandtner & K. Eldgridge, 1985. Historic emissions of sulfur and nitrogen oxides in the United States from 1900 to 1980. Report EPA-600/7–85–009, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Heaton, T. H. E., 1990. 15N/14N ratios of NOx from vehicle engines and coal-fired power stations. Tellus 42B: 304–307.

    Google Scholar 

  • Interlandi, S. J. & S. S. Kilham, 1998. Assessing the effects of nitrogen deposition on mountain waters: a study of phytoplankton community dynamics. Water Sci. Technol. 38: 139–146.

    Google Scholar 

  • Jacobson, G. L. & E. C. Grimm, 1986. A numerical analysis of Holocene forest and prairie vegetation in central Minnesota. Ecology 67: 958–966.

    Google Scholar 

  • Kendall, C., D. H. Campbell, D. A. Burns, J. B. Shanley, S. R. Silva & C. C. Y. Chang, 1995. Tracing sources of nitrate in snowmelt runoff using the oxygen and nitrogen isotopic composition of nitrate. In Tonnessen, K. A., M. W. Williams & M. Tranter (eds.), Biogeochemistry of Seasonally Snow-Covered Catchments. International Association of Hydrological Sciences Press, Willingford, 339–347.

    Google Scholar 

  • Kling, G. W. & M. C. Grant, 1984. Acid precipitation in the Colorado Front Range: an overview with time predictions for significant Effects. Arct. Alp. Res. 16: 321–329.

    Google Scholar 

  • Landers, D. H., J. M. Eilers, D. F. Brakke, W. S. Overton, R. D. Schonbrod, R. T. Crowe, R. A. Linthurst, J. A. Omernik, S. A. Teague & E. P. Meier, 1986. Characteristics of lakes in the Western United States, Vol. 1: Population descriptions and physicochemical relationships. Report EPA-600/3–86/054a, U.S. Environmental Protection Agency, Washington D.C.

    Google Scholar 

  • Macko, S. A. & N. E. Ostom, 1994. Pollution studies using stable isotopes. In Lajtha, K. & R. H. Michener (eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell, Boston, 45–62.

    Google Scholar 

  • McKnight, D. M., R. L. Smith, J. P. Bradbury, J. S. Baron & S. Spaulding, 1990. Phytoplankton dynamics in three Rocky Mountain lakes, Colorado, U.S.A. Arct. Alp. Res. 22: 264–274.

    Google Scholar 

  • Menounos B. & M. A. Reasoner, 1997. Evidence for cirque glaciation in Colorado Front Range during the Younger Dryas chron. Quat. Res. 48: 38–47.

    Google Scholar 

  • Reavie, E. D. & J. P. Smol, 2001. Diatom-environmental relationships in 64 alkaline southwestern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. J. Paleolim. 25: 27–44.

    Google Scholar 

  • Renberg, I., T. Korsman & H. J. B. Birks, 1993. Prehistoric increases in the pH of acid-sensitive Swedish lakes caused by land-use changes. Nature 362: 824–827.

    Google Scholar 

  • Schindler, D. W., P. J. Curtis, B. R. Parker & M. P. Stainton, 1996. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379: 705–708.

    Google Scholar 

  • Shanley, J. B., E. Pendall, C. Kendall, L. R. Stevens, R. L. Michel, P. J. Phillips, R. M. Forester, D. L. Naftz, B. Liu, L. Stern, B. B. Wolfe, C. P. Chamberlain, S. W. Leavitt, T. H. E. Heaton, B. Mayer, L. D. Cecil, W. B. Lyons, B. G. Katz, J. L. Betancourt, D. M. McKnight, J. D. Blum, T. W. D. Edwards, H. R. House, E. Ito, R. O. Aravena & J. F. Whelan, 1998. Isotopes as indicators of environmental change. In Kendall, C. & J. J. McDonnell (eds.), Isotope Tracers in Catchment Hydrology. Elsevier Science, New York, 761–816.

    Google Scholar 

  • Sievering, H., D. Rusch & L. Marquez, 1996. Nitric acid, particulate nitrate and ammonium in the continental free troposphere: nitrogen deposition to an alpine tundra ecosystem. Atmos. Env. 30: 2527–2537.

    Google Scholar 

  • Smil, V., 1997. Global population and the nitrogen cycle. Sci. Am. 277: 76–81.

    Google Scholar 

  • Teranes, J. L. & S. M. Bernasconi, 2000. The record of nitrate utilization and productivity limitation provided by d15N values in lake organic matter - a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol. Oceanogr. 45: 801–813.

    Google Scholar 

  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. G. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7: 737–750.

    Google Scholar 

  • Williams, M. W., J. S. Baron, N. Caine, R. Sommerfeld & R. Sanford Jr., 1996. Nitrogen saturation in the Rocky Mountains. Env. Sci. Technol. 30: 640–646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, A.P., Baron, J.S. & Cornett, R.J. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology 25, 1–7 (2001). https://doi.org/10.1023/A:1008129509322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008129509322

Navigation