Skip to main content
Log in

Competitive Calcium Binding: Implications for Dendritic Calcium Signaling

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Action potentials evoke calcium transients in dendrites of neocortical pyramidal neurons with time constants of <100 ms at physiological temperature. This time period may not be sufficient for inflowing calcium ions to equilibrate with all present Ca2+-binding molecules. We therefore explored nonequilibrium dynamics of Ca2+ binding to numerous Ca2+ reaction partners within a dendritelike compartment using numerical simulations. After a brief Ca2+ influx, the reaction partner with the fastest Ca2+ binding kinetics initially binds more Ca2+ than predicted from chemical equilibrium, while companion reaction partners bind less. This difference is consolidated and may result in bypassing of slow reaction partners if a Ca2+ clearance mechanism is active. On the other hand, slower reaction partners effectively bind Ca2+ during repetitive calcium current pulses or during slower Ca2+ influx. Nonequilibrium Ca2+ distribution can further be enhanced through strategic placement of the reaction partners within the compartment. Using the Ca2+ buffer EGTA as a competitor of fluo-3, we demonstrate competitive Ca2+ binding within dendrites experimentally. Nonequilibrium calcium dynamics is proposed as a potential mechanism for differential and conditional activation of intradendritic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-triphosphate. Science 258:1812–1815.

    PubMed  Google Scholar 

  • Ascher P, Nowak L (1988) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J. Physiol. 399:247–266.

    PubMed  Google Scholar 

  • Atluri PP, Regehr WG (1996) Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16:5661–5671.

    PubMed  Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends in Neurosci. 15:303–308.

    Google Scholar 

  • Bertram R, Sherman A, Stanley EF (1996) Single-domain/bound calcium hypothesis of transmitter release and facilitation. J. Neurophysiol. 75:1919–1931.

    PubMed  Google Scholar 

  • Blaustein MP (1988) Calcium transport and buffering in neurons. Trends in Neurosci. 11:438–443.

    Google Scholar 

  • Borst JGG, Sakmann B (1996) Calcium influx and transmitter release in a fast CNS synapse. Nature 383:431–434.

    PubMed  Google Scholar 

  • Borst JGG, Sakmann B (1998) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J. Physiol. 506:143–157.

    PubMed  Google Scholar 

  • Clapham DE (1995) Calcium signaling. Cell 80:259–268.

    PubMed  Google Scholar 

  • Connors KA (1990) Chemical Kinetics. The Study of Reaction Rates in Solution. VCH Verlagsgesellschaft, Weinheim, Germany. pp. 90–96.

    Google Scholar 

  • Delaney KR, Tank DW (1994) A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J. Neurosci. 14:5885–5902.

    PubMed  Google Scholar 

  • Denk W, Yuste R, Svoboda K, Tank DW (1996) Imaging calcium dynamics in dendritic spines. Current Opinion in Neurobiol. 6:372–378.

    Google Scholar 

  • Eberhard M, Erne P (1991) Calcium binding to fluorescent calcium indicators: Calcium green, calcium orange and calcium crimson. Biochem. Biophys. Res. Commun. 180:209–215.

    PubMed  Google Scholar 

  • Falke JJ, Drake SK, Hazard AL, Peersen OB (1994) Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. Biophys. 27:219–290.

    PubMed  Google Scholar 

  • Feller MB, Delaney KR, Tank DW (1996) Presynaptic calcium dynamics at the frog retinotectal synapse. J. Neurophysiol. 76:381–400.

    PubMed  Google Scholar 

  • Fogelson AL, Zucker RS (1985) Presynaptic calcium diffusion from various arrays of single channels: Implications for transmitter release and synaptic facilitation. Biophys. J. 48:1003–1017.

    PubMed  Google Scholar 

  • Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70:1069–1081.

    PubMed  Google Scholar 

  • Helmchen F, Borst JGG, Sakmann B (1997) Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72:1458–1471.

    PubMed  Google Scholar 

  • Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244–246.

    PubMed  Google Scholar 

  • Kao JPY, Tsien RY (1988) Ca2+ binding kinetics of fura-2 and azo-1 from temperature-jump relaxation measurements. Biophys. J. 53:635–639.

    PubMed  Google Scholar 

  • Kennedy MB (1989) Regulation of neuronal function by calcium. Trends in Neurosci. 12:417–420.

    Google Scholar 

  • Lattanzio FA, Jr., Bartschat DK (1991) The effect of pH on rate constants, ion selectivity and thermodynamic properties of fluorescent calcium and magnesium indicators. Biochem. Biophys. Res. Commun. 177:184–191.

    PubMed  Google Scholar 

  • Li Y-X, Rinzel J, Vergara L, Stojilkovic SS (1995) Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs. Biophys. J. 69:785–795.

    PubMed  Google Scholar 

  • Li Y-X, Stojilkovic SS, Keizer J, Rinzel J (1997) Sensing and refilling calcium stores in an excitable cell. Biophys. J. 72:1080–1091.

    PubMed  Google Scholar 

  • Llinás R, Sugimori M, Simon SM (1982) Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc. Nat. Acad. Sci. USA 79:2415–2419.

    PubMed  Google Scholar 

  • Magee JC, Christofi G, Miyakawa H, Christie B, Lasser-Ross N, Johnston D (1995) Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into dendrites of hippocampal pyramidal neurons. J. Neurophysiol. 74:1335–1342.

    PubMed  Google Scholar 

  • Markram H, Sakmann B (1994) Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. Proc. Nat. Acad. Sci. USA 91:5207–5211.

    PubMed  Google Scholar 

  • Markram H, Helm PJ, Sakmann B (1995) Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. 485:1–20.

    PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215.

    PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J. Physiol. 394:501–527.

    PubMed  Google Scholar 

  • Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17:6961–6973.

    PubMed  Google Scholar 

  • Neher, E (1986) Concentration profiles of intracellular calcium in the presence of a diffusible chelator. In: U Heinemann, M Klee, E Neher, W Singer, eds. Calcium Electrogenesis and Neuronal Functioning. Springer-Verlag, Berlin, Germany. pp. 80–96.

    Google Scholar 

  • Neher, E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacol. 34:1423–1442.

    Google Scholar 

  • Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. 450:273–301.

    PubMed  Google Scholar 

  • Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys. J. 64:77–91.

    PubMed  Google Scholar 

  • Regehr WG, Tank DW (1994) Dendritic calcium dynamics. Current Opinion in Neurobiol. 4:373–382.

    Google Scholar 

  • Regehr WG, Atluri PP (1995) Calcium transients in cerebellar granule cell presynaptic terminals. Biophys. J. 68:2156–2170.

    PubMed  Google Scholar 

  • Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. 4:29–42.

    Google Scholar 

  • Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J. Neurosci. 14:3246–3262.

    PubMed  Google Scholar 

  • Robertson SP, Johnson JD, Potter JD (1981) The time-course of Ca2+exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys. J. 34:559–569.

    PubMed  Google Scholar 

  • Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384:170–172.

    PubMed  Google Scholar 

  • Sala F, Hernández-Cruz A (1990) Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys. J. 57:313–324.

    PubMed  Google Scholar 

  • Schiller J, Helmchen F, Sakmann B (1995) Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J. Physiol. 487:583–600.

    PubMed  Google Scholar 

  • Sinha SR, Wu L-G, Saggau P (1997) Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses. Biophys. J. 72:637–651.

    PubMed  Google Scholar 

  • Smith GD (1996) Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys. J. 71:3064–3072.

    PubMed  Google Scholar 

  • Smith GD, Wagner J, Keizer J (1996) Validity of the rapid buffering approximation near a point source of calcium ions. Biophys. J. 70:2527–2539.

    PubMed  Google Scholar 

  • Spruston N, Jonas P, Sakmann B (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. 482:325–352.

    PubMed  Google Scholar 

  • Stern MD (1992) Buffering of calcium in the vicinity of a channel pore. Cell Calcium 13:183–192.

    PubMed  Google Scholar 

  • Stuart GJ, Dodt H-U, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Archiv 423:511–518.

    Google Scholar 

  • Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72.

    PubMed  Google Scholar 

  • Stuart G, Spruston N, Sakmann B, Häusser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in Neurosci. 20:125–131.

    Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165.

    PubMed  Google Scholar 

  • Wagner J, Keizer J (1994) Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67:447–456.

    PubMed  Google Scholar 

  • Xu T, Naraghi M, Kang H, Neher E (1997) Kinetic studies of Ca2+binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73:532–545.

    PubMed  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684.

    PubMed  Google Scholar 

  • Yuste R, Tank DW (1996) Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16:701–716.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markram, H., Roth, A. & Helmchen, F. Competitive Calcium Binding: Implications for Dendritic Calcium Signaling. J Comput Neurosci 5, 331–348 (1998). https://doi.org/10.1023/A:1008891229546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008891229546

Navigation