Skip to main content
Log in

An improved method for distinguishing between anisotropic tumbling and chemical exchange in analysis of 15N relaxation parameters

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Although an accurate description of global tumbling of a protein is essential for correct analysis of internal motions, proper distinction between the effects of anisotropic rotational diffusion and conformational exchange has remained a challenge. We present a novel two-part filtering procedure designed specifically to distinguish between the effects of anisotropy and conformational exchange. The efficacy of this method is assessed using synthetic data sets. The method is then applied to two proteins of dramatically different size and shape, OspA and SH3. The large size and extreme anisotropy of OspA provide a challenging case, where conformational exchange is a small perturbation of the effects of anisotropy on transverse relaxation rates. Conversely, in the chicken c-Src SH3 domain, with its small size and nearly spherical shape, anisotropy is a small perturbation of the effects of conformational exchange on transverse relaxation rates. Accurate extraction of the global tumbling parameters for each protein allows optimal characterization of conformational exchange processes, as well as ps–ns time scale motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akke, M., Bruschweiler, R. and Palmer, A.G. (1993) J. Am. Chem. Soc., 115, 9832-9833.

    Google Scholar 

  • Akke, M. and Palmer, A.G. (1996) J. Am. Chem. Soc., 118, 911-912.

    Google Scholar 

  • Andrec, M., Montelione, G.T. and Levy, R.M. (1999) J. Magn. Reson., 139, 408-421.

    Google Scholar 

  • Bevington, P.R. and Robinson, D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, Boston, MA.

    Google Scholar 

  • Bu, Z.M., Koide, S. and Engelman, D.M. (1998) Protein Sci., 7, 2681-2683.

    Google Scholar 

  • Cavanagh, J., Fairbrother, W.J., Palmer, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego, CA.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 4989-4991.

    Google Scholar 

  • Cordier, F., Wang, C., Grzesiek, S. and Nicholson, L.K. (2000) J. Mol. Biol., 304, 497-505.

    Google Scholar 

  • de Alba, E., Baber, J.L. and Tjandra, N. (1999) J. Am. Chem. Soc., 121, 4282-4283.

    Google Scholar 

  • Farrar, T.C. and Becker, E.D. (1971) Pulse and Fourier Transform NMR: Introduction to Theory and Methods, Academic Press, New York, NY.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984-6003.

    Google Scholar 

  • Feher, V.A. and Cavanagh, J. (1999) Nature, 400, 289-293.

    Google Scholar 

  • Forman-Kay, J.D. (1999) Nat. Struct. Biol., 6, 1086-1087.

    Google Scholar 

  • Fushman, D., Ghose, R. and Cowburn, D. (2000) J. Am. Chem. Soc., 122, 10640-10649.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593-12594.

    Google Scholar 

  • Ishima, R., Freedberg, D.I., Wang, Y.X., Louis, J.M. and Torchia, D.A. (1999) Struct. Fold. Des., 7, 1047-1055.

    Google Scholar 

  • Jia, X., Lee, L.K., Light, J., Palmer, A.G. and Assa-Munt, N. (1999) J. Mol. Biol., 292, 1083-1093.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972-8979.

    Google Scholar 

  • Kroenke, C.D., Loria, J.P., Lee, L.K., Rance, M. and Palmer, A.G. (1998) J. Am. Chem. Soc., 120, 7905-7915.

    Google Scholar 

  • Lee, A.L. and Wand, A.J. (1999) J. Biomol. NMR, 13, 101-112.

    Google Scholar 

  • Lee, L.K., Rance, M., Chazin, W.J. and Palmer, A.G. (1997) J. Biomol. NMR, 9, 287-298.

    Google Scholar 

  • Li, H., Dunn, J.J., Luft, B.J. and Lawson, C.L. (1997) Proc. Natl. Acad. Sci. USA, 94, 3584-3589.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559.

    Google Scholar 

  • Luginbuhl, P., Pervushin, K.V., Iwai, H. and Wüthrich, K. (1997) Biochemistry, 36, 7305-7312.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, A.G. (1995) J. Mol. Biol., 246, 144-163.

    Google Scholar 

  • Nicholson, L.K., Kay, L.E., Baldisseri, D.M., Arango, J., Young, P.E., Bax, A. and Torchia, D.A. (1992) Biochemistry, 31, 5253-5263.

    Google Scholar 

  • Nicholson, L.K., Yamazaki, T., Torchia, D.A., Grzesiek, S., Bax, A., Stahl, S.J., Kaufman, J.D., Wingfield, P.T., Lam, P.Y.S., Jadhav, P.K., Hodge, C.N., Domaille, P.J. and Chang, C.H. (1995) Nat. Struct. Biol., 2, 274-280.

    Google Scholar 

  • Palmer, A.G., Wright, P.E. and Rance, M. (1991) Chem. Phys. Lett., 185, 41-46.

    Google Scholar 

  • Pham, T.N., Koide, A. and Koide, S. (1998) Nat. Struct. Biol., 5, 115-119.

    Google Scholar 

  • Pham, T.N. and Koide, S. (1998) J. Biomol. NMR, 11, 407-414.

    Google Scholar 

  • Phan, I.Q.H., Boyd, J. and Campbell, I.D. (1996) J. Biomol. NMR, 8, 369-378.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1996) Numerical Recipes in C: The Art of Scientific Computing, Press Syndicate of the University of Cambridge, New York, NY.

    Google Scholar 

  • Raiford, D.S., Fisk, C.L. and Becker, E.D. (1979) Anal. Chem., 51, 2050-2051.

    Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson., B105, 211-224.

    Google Scholar 

  • Skrynnikov, N.R., Goto, N.K., Yang, D.W., Choy, W.Y., Tolman, J.R., Mueller, G.A. and Kay, L.E. (2000) J. Mol. Biol., 295, 1265-1273.

    Google Scholar 

  • Taylor, J.R. (1982) An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, Oxford University Press, Mill Valley, CA.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562-12566.

    Google Scholar 

  • Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol. NMR, 8, 273-284.

    Google Scholar 

  • Woessner, D.E. (1962) J. Chem. Phys., 37, 647-654.

    Google Scholar 

  • Xu, W., Doshi, A., Lei, M., Eck, M.J. and Harrison, S.C. (1999) Mol. Cell, 3, 629-638.

    Google Scholar 

  • Yamazaki, T., Muhandiram, R. and Kay, L.E. (1994) J. Am. Chem. Soc., 116, 8266-8278.

    Google Scholar 

  • Yang, D.W., Mok, Y.K., Forman-Kay, J.D., Farrow, N.A. and Kay, L.E. (1997) J. Mol. Biol., 272, 790-804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawley, N.H., Wang, C., Koide, S. et al. An improved method for distinguishing between anisotropic tumbling and chemical exchange in analysis of 15N relaxation parameters. J Biomol NMR 20, 149–165 (2001). https://doi.org/10.1023/A:1011249816560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011249816560

Navigation