Skip to main content
Log in

‘Evolution of Photosynthesis’ (1970), re-examined thirty years later

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

I have re-examined my 1970 article ‘Evolution of Photosynthesis’ (Olson JM, Science 168: 438–446) to see whether any of my original proposals still survive. My original conviction that the evolution of photosynthesis was intimately connected with the origin of life has been replaced with the realization that photosynthesis may have been invented by the Bacteria after their divergence from the Archea. The common ancestor of all extant photosynthetic bacteria and cyanobacteria probably contained bacteriochlorophyll a, rather than chlorophyll a as originally proposed, and may have carried out CO2 fixation instead of photoassimilation. The first electron donors were probably reduced sulfur compounds and later ferrous iron. The common ancestor of all extant reaction centers was probably similar to the homodimeric RC1 of present-day green sulfur bacteria (Chlorobiaceae) and heliobacteria. In the common ancestor of proteobacteria and cyanobacteria, the gene for the primordial RC1 was apparently duplicated and one copy split into two genes, one for RC2 and the other for a chlorophyll protein similar to CP43 and CP47 in extant cyanobacteria and chloroplasts. Homodimeric RC1 and homodimeric RC2 functioned in series as in the Z-scheme to deliver electrons from Fe(OH)+ to NADP+, while RC1 and/or RC2 separately drove cyclic electron flow for the production of ATP. In the line of evolution leading to proteobacteria, RC1 and the chlorophyll protein were lost, but RC2 was retained and became heterodimeric. In the line leading to cyanobacteria, both RC1 and RC2 replaced bacteriochlorophyll a with chlorophyll a and became heterodimeric. Heterodimeric RC2 further coevolved with a Mn-containing complex to utilize water as the electron donor for CO2 fixation. The chlorophyll–protein was also retained and evolved into CP43 and CP47. Heliobacteria are the nearest photosynthetic relatives of cyanobacteria. The branching order of photosynthetic genes appears to be (1) proteobacteria, (2) green bacteria (Chlorobiaceae plus Chloroflexaceae), and (3) heliobacteria plus cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen TP, Feher G, Yeates TO, Komiya H and Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc Natl Acad Sci USA 84: 5730–5734

    Article  PubMed  CAS  Google Scholar 

  • Allen TP, Feher G, Yeates TO, Komiya H and Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits. Proc Natl Acad Sci USA 84: 6162–6166

    Article  PubMed  CAS  Google Scholar 

  • Bader KP (1994) Physiological and evolutionary aspects of the O2/H2O-cycle in cyanobacteria. Biochim Biophys Acta 1188: 213–219

    Article  Google Scholar 

  • Barghoorn ES and Schopf JW (1966) Microorganisms three billion years old from the Precambrian of South Africa. Science 152: 758

    PubMed  Google Scholar 

  • Beanland TJ (1990) Evolutionary relationships between ‘Q-type’ photosynthetic reaction centres: Hypothesis-testing using parsimony. J Theor Biol 145: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Berkner LV and Marshall LC (1965a) History of major atmospheric components. Proc Natl Acad Sci USA 53: 1215–1225

    Article  CAS  Google Scholar 

  • Berkner LV and Marshall LC (1965b) On the origin and rise of oxygen concentration in the Earth's atmosphere. J Atmos Sci 22: 225–261

    Article  CAS  Google Scholar 

  • Berkner LV and Marshall LC (1969) The rise and stability of the earth's atmosphere. In: Brookhaven Natl Lab Lect Sci Vistas Res, Vol 4, pp 113–122. Gordon and Breach, New York

    Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 51: 91–111

    Article  Google Scholar 

  • Blankenship RE and Hartman H (1998) The origin and evolution of oxygenic photosynthesis. TIBS 23: 94–97

    PubMed  CAS  Google Scholar 

  • Bogorad L (1965) Chlorophyll biosynthesis. In: Goodwin TW (ed) Chemistry and Biochemistry of Plant Pigments, p 64. Academic Press, London

    Google Scholar 

  • Brockmann H and Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136: 17–19

    Article  CAS  Google Scholar 

  • Bryant DA (1992) Molecular biology of Photosystem I. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 501–549. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archean lakes. Science 255: 74–77

    PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE and Sidow A (1993) Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 93: 7134–7138

    Article  Google Scholar 

  • Canfield DE, Habicht KS and Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288: 658–661

    Article  PubMed  CAS  Google Scholar 

  • Cloud Jr PE (1965a) Chairman's summary remarks. Proc Natl Acad Sci USA 53: 1169–1172

    Article  Google Scholar 

  • Cloud Jr PE (1965b) Significance of the Gunflint (Precambrian) microflora. Science 148: 27–35

    PubMed  Google Scholar 

  • Cohen Y (1984) Oxygenic photosynthesis, anoxygenic photosynthesis and sulfate reduction in cyanobacterial mats. In: Klug MJ and Reddy CA (eds) Current Perspectives in Microbial Ecology, pp 435–441. Am Society of Microbiology, Washington, DC

    Google Scholar 

  • Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246: 429–457.

    Article  PubMed  CAS  Google Scholar 

  • Dismukes GC (1996) Manganese enzymes with binuclear active sites. Chem Rev 96: 2909–2926

    Article  PubMed  CAS  Google Scholar 

  • Eglinton G and Calvin M (1967) Chemical fossils. Sci Am 216: 32–43

    Article  CAS  Google Scholar 

  • Ehrenreich A and Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol 4: 4517–4526

    Google Scholar 

  • Engel AEJ, Nagy B, Nagy LA, Engel CG, Kremp GOW and Drew CM (1968) Alga-like forms in Onverwacht Series, South Africa: Oldest recognized lifelike forms on Earth. Science 161: 1005–1008

    PubMed  Google Scholar 

  • Feiler U and Hauska G (1995) The reaction center from green sulfur bacteria. In Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 665–685. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Harold FM (1986) The Vital Force: A Study of Bioenergetics, Freeman, New York, p 120

    Google Scholar 

  • Hartman H (1998) Photosynthesis and the origin of life. Origins Life Evol Biosphere 28: 515–521

    Article  CAS  Google Scholar 

  • Heath RL (1971) Hydrazine as an electron donor to the wateroxidation site in photosynthesis. Biochim Biophys Acta 245: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Heising S and Schink B (1998) Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannieli strain. Microbiology 144: 2263–2269

    Article  PubMed  CAS  Google Scholar 

  • Heising S, Richter L, Ludwig W and Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a 'Geospirillum' sp. strain. Arch Microbiol 172: 116–124

    Article  PubMed  CAS  Google Scholar 

  • Holland HD (1994) Early Proterozoic atmosphere change. In: Bengtson S (ed) Early Life on Earth, pp 237–244. Columbia University Press, New York

    Google Scholar 

  • Holland HD, Lazar B and McCaffrey M (1986) Evolution of the atmosphere and oceans. Nature 320: 33–37

    Google Scholar 

  • Holmes A (1954) The oldest dated minerals of the Rhodesian Shield. Nature 173: 612–614

    Article  CAS  Google Scholar 

  • Izawa S, Heath RL and Hind G (1969) The role of chloride in photosynthesis: III. The effect of artificial electron donors upon electron transport. Biochim Biophys Acta 180: 388

    Article  PubMed  CAS  Google Scholar 

  • Johansen J (1988) A possible role for hydrogen peroxide as a naturally occurring electron donor in photosynthetic oxygen evolution. Biochem Biophys Acta 933: 406–412

    Article  CAS  Google Scholar 

  • Kasting JF (1993) Earth's early atmosphere. Science 259: 920–926

    PubMed  CAS  Google Scholar 

  • Kasting JF and Brown LL (1998) The early atmosphere as a source of biogenic compounds. In: Brack A (ed) The Molecular Origins of Life: Assembling the Pieces of the Puzzle, pp 35–56. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kasting JF, Pollack JB and Crisp D (1984) Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J Atmos Chem 1: 403–428

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N and Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with 2,6-phytadienol. Photosynth Res 63: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Nagashima KVP, Hanada S, Hiraishi A, Shimada K and Matsuura K (1995) Phylogenetic analysis of photosynthetic reaction centers of purple bacteria and green filamentous bacteria. In: Matis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 975–978. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Nagashima KVP, Hiraishi A, Shimada K and Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Knox RS (1969) Thermodynamics and the primary processes of photosynthesis. Biophys J 9: 1351

    PubMed  CAS  Google Scholar 

  • Laselles J (1968) The bacterial photosynthetic apparatus. Adv Microbiol Physiol 2: 1–42

    Google Scholar 

  • Latimer WM(1952) The Oxidation States of the Elements and Their Potentials in Aqueous Solution. Prentice-Hall, New York

  • Lockhart PJ, Larkum AWD, Steel MA, Waddell PJ and Penny D (1996) Evolution of chlorophyll and bacteriochlorophyll: The problem of invariant sites in sequence analysis. Proc Natl Acad Sci USA 93: 1930–1934

    Article  PubMed  CAS  Google Scholar 

  • Margulies MM (1991) Sequence similarity between Photosystems I and II. Identification of a Photosystem I reaction center transmembrane helix that is similar to transmembrane helix IV of the D2 subunit of Photosystem II and theMsubunit of the non-sulfur and flexible green bacteria. Photosynth Res 29: 133–147

    CAS  Google Scholar 

  • Mathis P (1990) Compared structure of plant and bacterial photosynthetic reaction centers. Evolutionary implications. Biochim Biophys Acta 1018: 163–167

    Article  CAS  Google Scholar 

  • Mauzerall D (1977) Porphyrins, chlorophyll, and photosynthesis. In: Trebst A and Avron M (eds) Encyclopedia of Plant Physiology New Series, Vol 5, pp 117–124. Springer-Verlag, Berlin

    Google Scholar 

  • Mauzerall D (1992) Light, iron, Sam Granick and the origin of life. Photosynth Res 33: 163–170

    Article  CAS  Google Scholar 

  • McKay CP and Hartman H (1991) Hydrogen peroxide and the evolution of oxygenic photosynthesis. Origins Life Evol Biosphere 21: 157–163

    Article  CAS  Google Scholar 

  • Mercer-Smith JA and Mauzerall D (1984) Photochemistry of porphyrins: A model for the origin of photosynthesis. Photochem Photobiol 39: 397–405

    PubMed  CAS  Google Scholar 

  • Meyer TE (1994) Evolution of photosynthetic reaction centers and light harvesting chlorophyll proteins. BioSystems 33: 167–175

    Article  PubMed  CAS  Google Scholar 

  • Meyer TE, Van Beeumen JJ, Ambler RP and Cusanovich MA (1996) The evolution of electron transfer proteins in photosynthetic bacteria and denitrifying pseudomonads. In: Baltscheffsky H (ed) Origin and Evolution of Biological Energy Conversion, pp 71–108. VCH Publishers, New York

    Google Scholar 

  • Morell V (1997) Microbiology's scarred revolutionary. Science 276: 699–702

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY and Junge W (1997) On the origin of photosynthesis as inferred from sequence analysis. Photosynth Res 51: 27–42

    Article  CAS  Google Scholar 

  • Nitschke W, Kramer DM, Riedel A and Liebl U (1995) From naphtho-to benzoquinones — (R)evolutionary reorganizations of electron transfer chains. In: Matis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 945–948. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Nitschke W, Mühlenhoff U and Liebl U (1998) Evolution. In: Raghavendra A (ed) Photosynthesis: A Comprehensive Treatise, pp 285–304. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ochman H, Lawence JG and Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304

    Article  PubMed  CAS  Google Scholar 

  • Ohmoto H, Kakegawa T and Lowe DR (1993) 3.4 billion-year-old biogenic pyrites from Barberton, South Africa: Sulfur isotope evidence. Science 262: 555–557

    PubMed  CAS  Google Scholar 

  • Olson JM (1970) Evolution of photosynthesis. Science 168: 438–446

    PubMed  CAS  Google Scholar 

  • Olson JM (1978) Precambrian evolution of photosynthetic and respiratory organisms. Evol Biol 11: 1–37

    CAS  Google Scholar 

  • Olson JM (1981a) Evolution of photosynthetic and respiratory prokaryotes and organelles. Ann N Y Acad Sci 361: 8–19

    PubMed  CAS  Google Scholar 

  • Olson JM (1981b) Evolution of photosynthetic reaction centers. Biosystems 14: 89–94

    Article  PubMed  CAS  Google Scholar 

  • Olson JM (1996) Iron—sulfur-type reaction centers: Introduction. Photochem Photobiol 64: 1–4

    CAS  Google Scholar 

  • Olson JM (1999) Early evolution of chlorophyll-based photosystems. Chemtracts—Biochemistry and Molecular Biology 12: 468–482

    CAS  Google Scholar 

  • Olson JM and Pierson BK (1986) Photosynthesis 3.5 thousand million years ago. Photosynth Res 9: 251–259

    Article  CAS  Google Scholar 

  • Olson JM and Pierson BK (1987a) Evolution of reaction centers in photosynthetic prokaryotes. Ann Rev Cytol 108: 209–248

    Article  CAS  Google Scholar 

  • Olson JM and Pierson BK (1987b) Origin and evolution of photosynthetic reaction centers. Orig Life 17: 419–430

    Article  CAS  Google Scholar 

  • Oparin AI (1968) Genesis and Evolutionary Development of Life. Academic Press, New York

    Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740

    Article  PubMed  CAS  Google Scholar 

  • Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C and Popot JL (1997) On the presence and role of chlorophyll a in the cytochrome b 6 f complex. J Biol Chem 272: 21901–21908

    Article  PubMed  CAS  Google Scholar 

  • Pierson BK (1994) The emergence, diversification and role of photosynthetic eubacteria. In: Bengtson S (ed) Early Life on Earth, pp 161–180. Columbia University Press, New York

    Google Scholar 

  • Pierson BK and Olson JM (1987) Photosynthetic bacteria. In: Amesz J (ed) Photosynthesis, pp 21–42. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Pierson BK and Olson JM(1989) Evolution of photosynthesis in anoxygenic photosynthetic procaryoytes. In: Cohen Y and Rosenberg E (eds) Microbial Mats, Physiological Ecology of Benthic Communities, pp 402–427. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Pierson BK and Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. Proc Natl Acad Sci USA 80: 80–84

    Article  PubMed  CAS  Google Scholar 

  • Pierson BK, Parenteau MN and Griffin BM (1999) Phototrophs in high-iron-concentration microbial mats: Physiological ecology of phototrophs in an iron-depositing hot spring. Appl Environ Microbiol 65: 5474–5483

    PubMed  CAS  Google Scholar 

  • Poggese C, De Laureto PP, Giacometti GM, Rigoni F and Barbato R (1997) Cytochrome b 6/f complex from the cyanobacterium Synochocystis 6803: Evidence of dimeric organization and identification of chlorophyll-binding subunit. FEBS Lett 414: 585–589

    Article  PubMed  CAS  Google Scholar 

  • Ponnamperuma C (1968) Ultraviolet radiation and the origin of life. Photophysiology 3: 253–267

    CAS  Google Scholar 

  • Robert B and Moenne-Loccoz P (1989) Un site possible pour d l'accepteur primaire d'electrons du photosystème 1. C R Acad Sci Paris 308 Serie III: 407–409

    CAS  Google Scholar 

  • Robert B and Moenne-Loccoz P (1990) Is there a proteic substructure common to all photosynthetic reaction centers? In: Balscheffsky M (ed) Current Research in Photosynthesis, Vol 1, pp 65–68. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Ross RT and Calvin M (1967) Thermodynamics of light emission and free energy storage in photosynthesis. Biophys J 7: 595–614

    Article  PubMed  CAS  Google Scholar 

  • Samuilov VD (1997) Photosynthetic oxygen: the role of H2O2. A review. Biochemistry (Moscow) 62: 451–454

    CAS  Google Scholar 

  • Schopf JW and Barghoorn ES (1967) Alga-like fossils from the Early Precambrian of South Africa. Science 156: 508–512

    PubMed  Google Scholar 

  • Schopf JW and Walter MR (1983) Archean microfossils: New evidence of ancient microbes. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 214–239. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauss N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: A comparison based on the structural model of Photosystem I. J Mol Biol 280: 297–314

    Article  PubMed  CAS  Google Scholar 

  • Schütz M, Brugna M, Lebrun E, Baymann F, Huber R, Stetter K-O, Hauska G, Toci R, Lemesle-Meunier D, Tron P, Schmidt C and Nitschke W(2000) Early evolution of cytochrome bc-complexes. J Mol Biol 300: 663–676

    Article  PubMed  CAS  Google Scholar 

  • Stryer L (1988) Biochemistry, 3rd edition. Freeman, New York, p 411

    Google Scholar 

  • Towe KM (1994) Earth's early atmosphere: Constraints and opportunities for early evolution. In: Bengtson S (ed) Early Life on Earth, pp 36–47. Columbia University Press, New York

    Google Scholar 

  • Van De Meent EJ, Kobayashi M, Erkelens C, Van Veelen PA, Otte SCM, Inoue K, Wanatabe T and Amesz J (1992) The nature of the primary electron acceptor in green sulfur bacteria. Biochim Biophys Acta 1102: 371–378

    Article  CAS  Google Scholar 

  • Vermaas WFJ (1994) Evolution of heliobacteria: Implications for photosynthetic reaction center complexes. Photosynth Res 41: 285–294

    Article  PubMed  CAS  Google Scholar 

  • Vogel HJ and Vogel RH (1967) Some chemical glimpses of evolution. Chem Eng News 45: 90–97

    CAS  Google Scholar 

  • Walker JCG (1983) Possible limits on the composition of the Archaean ocean. Nature 302: 518–520

    Article  CAS  Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ and Walter MR (1983) Environmental evolution of the Archean-Early Proterozoic Earth. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 260–290. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B and Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Wilson CL, Hinman NW and Sheridan RP (2000a) Hydrogen peroxide formation and decay in iron-rich geothermal waters: The relative roles of abiotic and biotic mechanisms. Photochem Photobiol 71: 691–699

    Article  PubMed  CAS  Google Scholar 

  • Wilson CL, Hinman NW, Cooper WJ and Brown CF (2000b) Hydrogen peroxide cycling in surface geothermal waters of Yellowstone National Park. Environ Sci Technol 34: 2655–2662

    Article  CAS  Google Scholar 

  • Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95: 14851–14856

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Yachandra VK, Sauer K and Klein MP (1996) Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen. Chem Rev 96: 2927–2950

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, J.M. ‘Evolution of Photosynthesis’ (1970), re-examined thirty years later. Photosynthesis Research 68, 95–112 (2001). https://doi.org/10.1023/A:1011807229154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011807229154

Navigation