Skip to main content
Log in

The Ovarian Androgen-Producing Cells: A 2001 Perspective

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The androgen-producing cells in the postnatal mammalian ovary are located in the interstitial compartment of the ovary. The most important types of androgen-producing interstitial cells are the cells in the theca interna and the cells of the secondary interstitial glands. There has been some confusion in recent years regarding the terminology used to describe the ovarian androgen-producing cells, namely that “theca-interstitial” cells are somehow different from “theca” cells. In fact, these are the same cells. The name “theca-interstitial” was used by Erickson et al. [1] to describe the theca cells as one of the four androgen-producing cell types in the interstitial compartment of the ovary along with primary interstitial cells which are present only during embryonic development, secondary interstitial gland cells, and steroidogenic cells located in the hilar region of the ovary. For the sake of clarity and according to current convention, the term theca cell will be used throughout this review to refer to cells in the theca interna of the ovarian follicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erickson GF, Magoffim DA, Dyer CA, Hofeditz C. The ovarian androgen producing cells: a review of structure/function relationships. Endocr Rev 1985;6:371–399.

    Google Scholar 

  2. Gelety TJ, Magoffim DA. Ontogeny of steroidogenic enzyme gene expression in ovarian theca-interstitial cells: regulation by a paracrine theca differentiating factor prior to achieving LH responsiveness. Biol Reprod 1997;56:938–945.

    Google Scholar 

  3. Magoffim DA, Magarelli PC. Preantral follicles stimulate luteinizing hormone independent differentiation of ovarian thecainterstitial cells by an intrafollicular paracrine mechanism. Endocrine 1995;3:107–112.

    Google Scholar 

  4. Magarelli PC, Magoffin DA. Developmental and hormonal regulation of theca-cell differentiation factor secretion in ovarian follicles. Biol Reprod 1996;55:416–420.

    Google Scholar 

  5. Hirshfield AN. Theca cells may bepresent of the outset of follicular growth. Biol Reprod 1991;44:1157–1162.

    Google Scholar 

  6. Huang CTF, Weitsman SR, Navab A, Magoffin DA. Stem cell factor and insulin-like growth factor-I stimulate LH-independent differentiation of rat ovarian theca cells. Biol Reprod 2001;64:451–456.

    Google Scholar 

  7. Baker I, Hardy MP, Zhou I, Bondy C, Lupu F, Bellve A, Efstratiadis A. Effects of an IGF-1 gene null mutation on mouse reproduction. Malec Endocrinol 1996;10:903–918.

    Google Scholar 

  8. Bedell MA, Brannan CI, Evans EP, Copeland NG, Jenkins NA, Donovan PI. DNA rearrangements located over l00kb 5' of the Steel (Sl)-coding region in Steel-panda and Steel-contrated mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Genes Dev 1995;9:455–470.

    Google Scholar 

  9. Dong J, Albertini DE, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996;383:531–535.

    Google Scholar 

  10. Zachow RJ, Magoffin DA. Granulosa cell modulation of luteinizing hormone-dependent androgen production by ovarian theca-interstitial cells: A temporal switch from suppression to augmentation stimulated by follicle-stimulating hormone in vitro. Biol Reprod 1995;53:758–765.

    Google Scholar 

  11. Hillier SG, Yong EL, Illingworth PJ, Baird DT, Schwall RH, Mason AI. Effect of recombinant activin on androgen synthesis in cultured human thecal cells. J Clin Endocrinol Metab 1991;72:1206–1211.

    Google Scholar 

  12. Miyanaga K, Erickson OF, DePaolo LV, Ling N, Shimasaki S. Differential control of activin, inhibin and follistatin proteins in cultured rat granulosa cells. Biochem Biophys Res Commun 1993;194:253–258.

    Google Scholar 

  13. Fournet N, Weitsman SR, Zachow, RI, Magoffin DA. Transforming growth factor-ß inhibits ovarian 17?-hydroxylase activity by a direct non-competitive mechanism. Endocrinology 1996;137:166–174.

    Google Scholar 

  14. Zachow RJ, Weitsman SR, Magoffin DA. Hepatocyte growth factor regulates ovarian theca-interstitial cell differentiation and androgen production. Endocrinology 1997;138:691–697.

    Google Scholar 

  15. Weitsman SR, Magoffin DA. Transforming growth factor-a inhibits luteinizing hormone-stimulated androgen production by blocking 17?-hydroxylase/C17-20 lyase activity in rat ovarian theca-interstitial cells. Endocr 1993; 1:109–115.

    Google Scholar 

  16. Jakimiuk A], Weitsman SR, Brzechffa PR, Magoffin DA. Aromatase messenger ribonucleic acid expression in individual follicles from polycystic ovaries. Molec Human Reprod 1998;4:1–8.

    Google Scholar 

  17. Magoffin DA, Erickson OF. Control systems of theca-interstitial cells. In: Findlay JK, ed. Molecular Biology of the Female Reproductive System Orlando: Academic Press, 1994;39–65.

    Google Scholar 

  18. Magoffin DA Weitsman SR. Synergistic inter actions between LH an insulin/IGFs. In: Filicori M, Flamigni C, eds. The Ovary: Regulation Dysfunction, and Treatment. Amsterdam: Elsevier Science Publishers, 1996;79–85.

    Google Scholar 

  19. Erickson OF, Magoffin DA, Jones KL. Theca function in polycystic ovaries of a patient with virilizing congenital adrenal hyperplasia. Fertil Steril 1989;51:173–176.

    Google Scholar 

  20. Lobo RA. A disorder without identity: “HCA,” “PCO,” “PLOD,” “PCOS,” “SLS”. What are we to call it?! Fertil Steril 1995;63:1158–1160.

    Google Scholar 

  21. Futterweit W Deligdisch L. Histopathological effects of exogenously administered testosterone in 19 female to male transsexuals. J Clin Endocrinol Metab 1986;62:16–21.

    Google Scholar 

  22. Pache TD, Chadha S, Gooren LJ, Hop WC, Jaarsma KW, Dommerholt HB, Fauser BC. Ovarian morphology in long-term androgen-treated female to male transsexuals. A human model for the study of polycystic ovary syndrome? Histopathology 1991;19:445–452.

    Google Scholar 

  23. Bruining H, Bootsma AH, Koper JW Border I, de Jong FF, Lamberts SW. Fertility and body composition after laparoscopic bilateral adrenalectomy in a 30-year-old female with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2001;86:482–484.

    Google Scholar 

  24. Burghen GA, Givens JR, Kitabchi AE. Correlation of hyperandrogenism with hyperinsuhnism in polycystic ovarian disease. J Clin Endocrinol Metab 1980;50:113–116.

    Google Scholar 

  25. Legro RS, Finegood D, Dunaif A. A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1998;83:2694–2698.

    Google Scholar 

  26. Ehrmann DA, Sturis I, Byrne MM, Karrison T Rosenfield RL, Polonsky KS. Insulin secretary defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 1995;96:520–527.

    Google Scholar 

  27. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800.

    Google Scholar 

  28. Barbieri RL, Smith S, Ryan KJ The role of hyperinsulinemia in the pathogenesis of ovarian hyperandrogenism. Fertil Steril 1988;50:197–212.

    Google Scholar 

  29. Bergh C, Carlsson B, Olsson I-H, Selleskog U, Hillensjo T. Regulation of androgen production in cultured human thecal cells by insulin-like growth factor I and insulin. Fertil Steril 1993;59:323–331.

    Google Scholar 

  30. El-Roeiy A, Chen X, Roberts VJ, Shimasaki A, Ling N, LeRoith D, Roberts CT, Yen SSC. Expression of the genes encoding the insulin-like growth factors (IGF-I and II), the IGF and insulin receptors, and IGE-binding proteins-1-6 and the localization of their gene products in normal and polycystic ovary syndrome ovaries. J Clin Endocrinol Metab 1994;78:1488–1496.

    Google Scholar 

  31. Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin N Am 1999;28:361–378.

    Google Scholar 

  32. Gulling-Smith C, Story H, Rogers V, Franks S. Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin Endocrinol (Oxf) 1997;47:93–99.

    Google Scholar 

  33. Gulling-Smith C, Willis DS, Beard RW, Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab 1994;79:1158–1165.

    Google Scholar 

  34. Barbieri RL, Makris A, Randall RW, Daniels G, Kistner RW, Ryan KI. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab 1986;62:904–910.

    Google Scholar 

  35. Poretsky L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocr Rev 1991;12:3–13.

    Google Scholar 

  36. Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositol glycan mediators as the signal transduction system. J Clin Endocrinol Metab 1998;83:2001–2005.

    Google Scholar 

  37. Willis D, Franks S. Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor. J Clin Endocrinol Metab 1995;80:3788–3790.

    Google Scholar 

  38. Froesch ER, Zapf I. Insulin-like growth factors and insulin: comparative aspects. Diabetologia 1985;28:485–493.

    Google Scholar 

  39. LeRoith D, Wemer H, Neuenschwander S, Kalebic T, Helman LL. The role of the insulin-like growth factor-I receptor in cancer. Ann New York Acad Sci 1995;766:402–408.

    Google Scholar 

  40. Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med 1996;335:617–623.

    Google Scholar 

  41. Dunaif A, Scott D, Finegood D, Quintana B, Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 1996;81:3299–3306.

    Google Scholar 

  42. Acbay O, Gundogdu S. Can metformin reduce insulin resistance in polycystic ovary syndrome? Fertil Steril 1996;65:946–949.

    Google Scholar 

  43. Sattar N, Hopkinson ZE, Greer IA. Insulin-sensitizing agents in polycystic ovary syndrome. Lancet 1998;351:305–307.

    Google Scholar 

  44. Widen EI, Eriksson JG, Groop LC. Metformin normalizes nonoxidative glucose metabolism in insulin-resistant normoglycemic first-degree relatives of patients with NIDDM. Diabetes 1992;41:354–358.

    Google Scholar 

  45. Galuska D, Nolte LA, Zierath JR, Wallberg-Hennksson H. Effect of mefformin on insulin-stimulated glucose transport in isolated skeletal muscle obtained from patients with NIDDM. Diabetologia 1994;37:826–832.

    Google Scholar 

  46. Nestler JE, Jakubowicz DJ. Lean women with polycystic ovary syndrome respond to insulin reduction with decreases in ovarian P450c17 alpha activity and serum androgens. J Clin Endocrinol Metab 1997;82:4075–4079.

    Google Scholar 

  47. Diamanti-Kandarakis E, Mitrakou A, Raptis S, Tolis G, Duleba AI. The effect of a pure antiandrogen receptor blocker, flutamide, on the lipid profile in the polycystic ovary syndrome. J Clin Endocrinol Metab 1998;83:2699–2705.

    Google Scholar 

  48. La Marca A, Egbe TO, Morgante G, Paglia T, Ciani A, de Leo V. Metformin treatment reduces ovarian cytochrome P-450c17 response to human chorionic gonadotrophin in women with insulin resistance-polycystic ovary syndrome. Hum Reprod 2000;15:21–23.

    Google Scholar 

  49. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type B diabetes. Diabetes 1996;45:1661–1669.

    Google Scholar 

  50. Buse JB, Gumbiner B, Mathias NP, Nelson DM, Faja BW, Whitcomb RW. Troglitazone use in insulin-treated type 2 diabetic patients. Diabetes Care 1998;21:1455–1461.

    Google Scholar 

  51. Fonseca VA, Valiquett TR, Huang SM, Ghazzi MN, Whitcomb RW. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: A randomized, controlled study. The troglitazone study group. J Clin Endocrinol Metab 1998;83:3169–3176.

    Google Scholar 

  52. Park KS, Ciaraldi TP, Abrams-Carter L, Mudaliar S, Nikoulina SE, Henry RR. Troglitazone regulation of glucose metabolism in human skeletal muscle cultures from obese, type B diabetic subjects. J Clin Endocrinol Metab 1998;83:1636–1643.

    Google Scholar 

  53. Hasegawa I, Murakawa H, Suzuki M, Yamamoto Y, Kurabayashi T, Tanaka K. Effect of troglitazone on endocrine and ovulatory performance in women with insulin resistance-related polycystic ovary syndrome. Fertil Steril 1999;71:323–327.

    Google Scholar 

  54. Kumagai S, Holmang A, Bjorntorp P. The effects of oestrogen and progesterone on insulin sensitivity in female rats. Acta Physiol Scand 1993;149:91–97.

    Google Scholar 

  55. Rincon J, Holmang A, Wahlstrom EO, Lonnroth P, Bjorntorp P, Zierath JR, Wallberg-Henriksson H. Mechanisms behind insulin resistance in rat skeletal muscle after oophorectomy and additional testosterone treatment. Diabetes 1996;45:615–621.

    Google Scholar 

  56. Holmang A, Svedberg J, Jennische E, Bjomtorp P. Effects of testosterone on muscle insulin sensitivity and morphology in female rats. Am J Physiol 1990; 259:E555–560.

    Google Scholar 

  57. Baldini M, Semprini E, Orsatti A, Viale G, Cantalamessa L. Reduction of insulin resistance after correction of nonneoplastic ovarian virilization. J Endocrinol Invest 1993;16:285–289.

    Google Scholar 

  58. Diamond MP, Grainger D, Diamond MC, Sherwin RS, Defronzo RA. Effects of methyltestosterone on insulin secretion and sensitivity in women. J Clin Endocrinol Metab 1998; 83:4420–4425.

    Google Scholar 

  59. Polderman KH, Gooren LJ, Asscheman H, Bakker A, Heine RI. Induction of insulin resistance by androgens and estrogens. J Clin Endocrinol Metab 1994;79:265–271.

    Google Scholar 

  60. Geffner ME, Kaplan SA, Bersch N, Golde DW, Landaw EM, Chang RI. Persistence of insulin resistance in polycystic ovarian disease after inhibition of ovarian steroid secretion. Fertil Steril 1986;45:327–333.

    Google Scholar 

  61. Dunaif A, Green G, Futterweit W, Dobrjansky A. Suppression of hyperandrogenism does not improve peripheral or hepatic insulin resistance in the polycystic ovarian syndrome. J Clin Endocrinol Metab 1990;70:699–704.

    Google Scholar 

  62. Lasco A, Cucinotta D, Gigante A, Denuzzo G, Pedulla M, Trifiletti A, Frisina N. No changes of peripheral insulin resistance in polycystic ovary syndrome after long-term reduction of endogenous androgens with leuprolide. Eur J Endocrinol 1995;133:718–722.

    Google Scholar 

  63. Diamanti-Kandarakis E, Mitrakou A, Hennes MM, Platanissiotis D, Kaklas N, Spina J, Georgiadou E, Hoffman RG, Kissebah AH, Raptis S. Insulin senstivity and antiandrogenic therapy in women with polycystic ovary syndrome. Metabolism 1995;44:525–531.

    Google Scholar 

  64. Viael-Puig A, Munoz-Torres M, Garcia-Calvente C, Jodar-Gimeno E, Lardelli P, Ruiz-Requena ME, Escobar-Jiminez E. Reduction of endogenous, ovarian and adrenal androgens with ketoconazole does not alter insulin response in the polycystic ovary syndrome. J Endocrinol Invest 1994;17:647–652.

    Google Scholar 

  65. Chehab FF, Lim ME, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genet 1996;12:318–320.

    Google Scholar 

  66. Ezzell C. The molecular link between fat and female fertility. J NIH Res 1996;8:24–25.

    Google Scholar 

  67. Karlsson C, Lindell K, Svensson E, Bergh C, Lind P, Billig H, Carlsson LMS, Carlsson B. Expression of functional leptin receptors in the human ovary. J Clin Endocrinol Metab 1997;82:4144–4148.

    Google Scholar 

  68. Agarwal SK, Vogel K, Weitsman SR, Magoffin DA. Leptin antagonizes the insulin-like growth factor-I augmentation of steroidogenesis in granulosa and theca cells of the human ovary. J Clin Endocrinol Metab 1999;84:1072–1076.

    Google Scholar 

  69. Ruiz-Cortes ZT, Men T, Palin MF, Downey BR, Lacroix DA, Murphy BD. Porcine leptin receptor: Molecular structure and expression in the ovary. Mol Reprod Dev 2000;56:465–474.

    Google Scholar 

  70. Spicer LJ, Chamberlain CS, Francisco CC. Ovarian action of leptin: effects on insulin-like growth factor-I-stimulated function of granulosa and theccl cells. Endocrine 2000;12:53–59.

    Google Scholar 

  71. Spicer LJ, Francisco CC. Adipose obese gene product, leptin, inhibits bovine ovarian thecl cell steroidogenesis. Biol Reprod 1998;58:207–212.

    Google Scholar 

  72. Caro JF. Editorial: Leptin is normal in PCOS, and editorial about three “negative” papers. J Clin Endocrinol Metab 1997;82:1685–1686.

    Google Scholar 

  73. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature 2001;409:307–312.

    Google Scholar 

  74. Iakimiuk AI, Weitsman SR, Navab A, Magoffin DA. Luteinizing hormone receptor, steroidogenesis acute regulatory protein and steroidogenic enzyme messenger ribonucleic acids are overexpressed in theca and granulosa cells from polycystic ovaries. J Clin Endocrinol Metab 2001;86:1318–1323.

    Google Scholar 

  75. Nelson VL, Legro RS, Strauss III JF, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Molec Endocrinol 1999;13:946–957.

    Google Scholar 

  76. Wickenheisser JK, Quinn PG, Nelson VL, Legro RS, Strauss III JF, McAllister JM. Differential activity of the cytochrome P450 17?-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 2000;58:2304–2311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magoffin, D.A. The Ovarian Androgen-Producing Cells: A 2001 Perspective. Rev Endocr Metab Disord 3, 47–53 (2002). https://doi.org/10.1023/A:1012700802220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012700802220

Navigation