Skip to main content
Log in

Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry

  • Published:
Journal of Neurocytology

Abstract

The zebrafish retina is rapidly becoming a major preparation for the study of molecular genetic mechanisms underlying neural development and visual behavior. Studies utilizing retinal mutants would benefit by the availability of a data base on the distribution of neurotransmitter systems in the wild-type fish. To this end, the neurochemical anatomy of the zebrafish retina was surveyed by light microscopic immunocytochemistry. An extensive series of 60 separate antibodies were used to describe the distribution of major transmitter systems and a variety of neuron-associated membrane channels and proteins. These include markers (i.e., antibodies against enzymes, receptors, transporters) for transmitters: GABA, glycine, glutamate, biogenic amines, acetylcholine, cannabinoids and neuropeptides; as well as a sample of voltage-gated channels and synapse associated membrane proteins. Discussion of the comparative localization of these antibodies is restricted to other teleost fishes, particularly goldfish. Overall, there was great similarity in the distribution of the various markers, as might be expected. However, there were some notable differences, including several antibodies that did not label zebrafish at all, even though goldfish retinas that were processed in parallel, labeled beautifully. This survey is extensive, but not exhaustive, and hopefully will serve as a valuable resource for future studies of the zebrafish retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akopian, A., Johnson, J., Gabriel, R., Brecha, N. & Witkovsky, P. (2000) Somatostatin modulates voltage-gated K+ and Ca2+ currents in rod and cone photoreceptors of the salamander retina. Journal of Neuroscience 20, 929–936.

    Google Scholar 

  • Altschuler, R. A., Betz, H., Parakkal, M. A., Reeks, K. A. & Wenthold, R. J. (1986) Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Research 369, 316–320.

    Google Scholar 

  • Baier, H. (2000) Zebrafish on the move:Towards a behaviorgenetic analysis of vertebrate vision. Current Opinion in Neurobiology 10, 451–455.

    Google Scholar 

  • Baldridge, W. H. & Ball, A. K. (1993) A new type of interplexiform cell in the goldfish retina is PNMT-immunoreactive. Neuroreport 4, 1015–1018.

    Google Scholar 

  • Bekele-Arcuri, Z., Matos, M. F., Manganas, L., Strassle, B. W., Monaghan, M. M., Rhodes, K. J. & Trimmer, J. S. (1996) Generation and characterization of subtype-specific monoclonal antibodies to K+ channel α-and β-subunit polypeptides. Neuropharmacology 35, 851–865.

    Google Scholar 

  • Bilotta, J. (2001) The zebrafish as a model visual system. International Jounal of Developmental Neuroscienc 19, 621–629.

    Google Scholar 

  • Blank, H., Muller, B. & Korf, H. (1997) Comparative investigations of the neuronal apparatus in the pineal organ and retina of the rainbow trout: Immunocytochemical demonstration of neurofilament 200-kDa and neuropeptide Y, and tracing with DiI. Cell & Tissue Research 288, 417–425.

    Google Scholar 

  • Blazynski, C. & Perez, M.-T. R. (1992) Neuroregulatory functions of adenosine in the retina. Progress in Retinal Research 11, 293–332.

    Google Scholar 

  • Blute, T. A., Mayer, B. & Eldred, W. D. (1997) Immunocytochemical and histochemical localization of nitric oxide synthase in the turtle retina. Visual Neuroscience 14, 717–729.

    Google Scholar 

  • Bohn, M. C., Dreyfus, C. F., Friedman, W. J. & Markie, K. A. (1987) Glucocorticoid effects on phenylethanolamine N-methyltransferase (PNMT) in explants of embryonic rat medulla oblongata. Developmental Brain Research 37, 257–266.

    Google Scholar 

  • Brandon, C. (1985) Retinal GABA neurons: Localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Research 344, 286–295.

    Google Scholar 

  • Brecha, N. (1983) Neurotransmitters: Histochemical and biochemical studies. In Chemical Neuroanatomy (edited by Emson, P. C.) pp. 85–129. New York: Raven Press.

    Google Scholar 

  • Brecha, N., Sharma, S. C. & Karten, H. J. (1981) Localization of substance P like immunoreactivity in the adult and developing goldfish retina. Neuroscience 6, 2737–2746.

    Google Scholar 

  • Brecha, N. C. (1992) Expression of GABAA receptors in the vertebrate retina. In Progress in Brain Research, Vol. 90 (edited by Mize, R. R., Marc, R. E. & Sillito, A. M.) pp. 3–28. New York: Elsevier Science.

    Google Scholar 

  • Brockerhoff, S. E. (2001) Retinal disease in vertebrates. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) Amsterdam: Elsevier; Progress in Brain Research 131, 629-639.

    Google Scholar 

  • Brockerhoff, S. E., Hurley, J. B., Janssenbienhold, U., Neuhauss, S. C. F., Driever, W. & Dowling, J. E. (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proceedings of the National Academy of Science of the United States of America 92, 10545–10549.

    Google Scholar 

  • Bruun, A., Ehinger, B. & Sytsma, V. M. (1984) Neurotransmitter localization in the skate retina. Brain Research 295, 233–248.

    Google Scholar 

  • Caminos, E., Velasco, A., Jarrin, M., Lillo, C., Jimeno, D., Aijon, J. & Lara, J. M. (2000) A comparative study of protein kinase C-like immunoreactive cells in the retina. Brain, Behavior & Evolution 56, 330–339.

    Google Scholar 

  • Cerda, J., Conrad, M., Markl, J., Brand, M. & Herrmann, H. (1998) Zebrafish vimentin: Molecular characterization, assembly properties and developmental expression. European Journal of Cell Biology 77, 175–187.

    Google Scholar 

  • Chang, Y.-C. & Gottlieb, D. I. (1988) Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase. Journal of Neuroscience 8, 2123–2130.

    Google Scholar 

  • Connaughton, V. P., Behar, T. N., Liu, W. L. S. & Massey, S. C. (1999) Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Visual Neuroscience 16, 483–490.

    Google Scholar 

  • Dermietzel, R., Kremer, M., Paputsoglu, G., Stang, A., Skerrett, I. M., Gomes, D., Srinivas, M., Janssen-Bienhold, U., Weiler, R., Nicholson, B. J., Bruzzone, R. & Spray, D. C. (2000) Molecular and functional diversity of neural connexins in the retina. Journal of Neuroscience 20, 8331–8343.

    Google Scholar 

  • Di Marzo, V. & Deutsch, D. G. (1998) Biochemistry of the endogenous ligands of cannabinoid receptors. Neurobiology of Disease 5, 386–404.

    Google Scholar 

  • Dugandzija-Novakovic, S., Koszowski, A. G., Levinson, S. R. & Shrager, P. (1995) Clustering of Na channels and node of Ranvier formation in remyelinating axons. Journal of Neuroscience 15, 492–502.

    Google Scholar 

  • Easter, S. S. Jr. & Nicola, G. N. (1996) The development of vision in the zebrafish (Danio rerio). Developmental Biology 180, 646–663.

    Google Scholar 

  • Ehinger, B. & Perez, M. T. R. (1984) Autoradiography of nucleoside uptake into the retina. Neurochemistry International 6, 369–381.

    Google Scholar 

  • Ekman, R. & Tornqvist, K. (1985) Glucagon and VIP in the retina. Investigative Ophthalmology & Visual Science 26, 1405–1409.

    Google Scholar 

  • Enz, R., BrandstÄtter, J. H., WÄssle, H. & Bormann, J. (1996) Immunocytochemical localization of the GABAc receptor rho subunits in the mammalian retina. Journal of Neuroscience 16, 4479–4490.

    Google Scholar 

  • Ewert, M., De Blas, A. L., MÖhler, H. & Seeburg, P. H. (1992) Aprominent epitope on GABAA receptors is recognized by two different monoclonal antibodies. Brain Research 569, 57–62.

    Google Scholar 

  • Fadool, J. M. (2001) Understanding retinal cell fate determination through genetic manipulations. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) Amsterdam: Elsevier; Progress in Brain Research 131, 541-554.

    Google Scholar 

  • Famiglietti E. V. Jr., Kaneko, A. & Tachibana, M. (1977) Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 198, 1267–1269.

    Google Scholar 

  • Fletcher, E. L., Hack, I., BrandstÄtter, J. H. & WÄssle, H. (2000) Synaptic localization of NMDA receptor subunits in the rat retina. Journal of Comparative Neurology 420, 98–112.

    Google Scholar 

  • Foster, G. A., HÖkfelt, T., Coyle, J. T. & Goldstein, M. (1985) Immunohistochemical evidence for phenylethanolamine-N-methyltransferasepositive/ tyrosine hydroxylase-negative neurones in the retina and the posterior hypothalamus of the rat. Brain Research 330, 183–188.

    Google Scholar 

  • Gong, B., Rhodes, K. J., Bekele-arcuri, Z. & Trimmer, J. S. (1999) Type I and Type II Na+ channel alpha-subunit polypeptides exhibit distinct spatial and temporal patterning and association with auxiliary subunits in rat brain. Journal of Comparative Neurology 412, 342–352.

    Google Scholar 

  • Hamano, K., Kiyama, H., Emson, P. C., Manabe, R., Nakauchi, M. & Tohyama, M. (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. Journal of Comparative Neurology 302, 417–424.

    Google Scholar 

  • Hammang, J. P., Bohn, M. C. & Messing, A. (1992) Phenylethanolamine N-methyltransferase (PNMT)-expressing horizontal cells in the rat retina: A study employing double-label immunohistochemistry. Journal of Comparative Neurology 316, 383–389.

    Google Scholar 

  • Haverkamp, S. & WÄssle, H. (2000) Immunocytochemical analysis of the mouse retina. Journal of Comparative Neurology 424, 1–23.

    Google Scholar 

  • Hoch, W., Becker, C.-M., Greeningloh, G. & Betz, H. (1991) Mapping of antigenic epitopes on the α1-subunit of the inhibitory glycine receptor. Biochemistry 30, 42–47.

    Google Scholar 

  • Holzschuh, J., Ryu, S., Aberger, F. & Driever, W. (2001) Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mechanisms of Development 101, 237–243.

    Google Scholar 

  • Hughes, T. E., GrÜnert, U. & Karten, H. J. (1991) GABAA receptors in the retina of the cat: An immunohistochemical study of wholemounts, sections, and dissociated cells. Visual Neuroscience 6, 229–238.

    Google Scholar 

  • Imboden, M., Devignot, V., Korn, H. & Goblet, C. (2001) Regional distribution of glycine receptor messenger RNA in the central nervous system of zebrafish. Neuroscience 103, 811–830.

    Google Scholar 

  • Janssen-Bienhold, U., Dermietzel, R. & Weiler, R. (1998) Distribution of Connexin43 immunoreactivity in the retinas of different vertebrates. Journal of Comparative Neurology 396, 310–321.

    Google Scholar 

  • Janssen-Bienhold, U., Schultz, K., Gellhaus, A., Schmidt, P., AmmermÜller, J. & Weiler, R. (2001) Identification and localization of connexin26 within the photoreceptor-horizontal cell synaptic complex. Visual Neuroscience 8, 169–178.

    Google Scholar 

  • Jentsch, T. J. (1996) Chloride channels: A molecular perspective. Current Opinion in Neurobiology 6, 303–310.

    Google Scholar 

  • Johnson, J., Chen, T. K., Rickman, D. W., Evans, C. & Brecha, N. (1996) Multiple γ-aminobutyric acid plasma membrane transporters (GAT 1, GAT 2, GAT 3) in the rat retina. Journal of Comparative Neurology 375, 212–224.

    Google Scholar 

  • Jones, P. A. & Schechter, N. (1987) Distribution of specific intermediate-filament proteins in the goldfish retina. Journal of Comparative Neurology 266, 112–121.

    Google Scholar 

  • Kamermans, M., Fahrenfort, I., Schultz, K., Janssen-Bienhold, U., Sjoerdsma, T. & Weiler, R. (2001) Hemichannel-mediated inhibition in the outer retina. Science 292, 1178–1180.

    Google Scholar 

  • Kaufman, D. L., Houser, C. R. & Tobin, A. J. (1991) Two forms of the-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. Journal of Neurochemistry 56, 720–723.

    Google Scholar 

  • Kawamata, K., Ohtsuka, T. & Stell, W. K. (1990) Electron microscopic study of immunocytochemically labeled centrifugal fibers in the goldfish retina. Journal of Comparative Neurology 293, 655–664.

    Google Scholar 

  • Keyser, K. T., Karten, H. J., Katz, B. & Bohn, M. C. (1987) Catecholaminergic horizontal and amacrine cells in the ferret retina. Journal of Neuroscience 7, 3996–4004.

    Google Scholar 

  • Klooster, J., Studholme, K. M. & Yazulla, S. (2001) Localization of the AMPA subunit GluR2 in the outer plexiform layer of goldfish retina. Journal of Comparative Neurology 441, 155–167.

    Google Scholar 

  • Kolb, H., Linberg, K. A. & Fisher, S. K. (1992) Neurons of the human retina: A Golgi study. Journal of Comparative Neurology 318, 147–187.

    Google Scholar 

  • Koulen, P., BrandstÄtter, J. H., KrÜger, S., Enz, R., Bormann, J. & WÄssle, H. (1997) Immunocytochemical localization of the GABAC receptor rho subunits in the cat, goldfish, and chicken retina. Journal of Comparative Neurology 380, 520–532.

    Google Scholar 

  • Koulen, P., Fletcher, E. L., Craven, S. E., Bredt, D. S. & WÄssle, H. (1998) Immunocytochemical localization of the postsynaptic density protein PSD-55 in the mammalian retina. Journal of Neuroscience 18, 10136–10149.

    Google Scholar 

  • Koulen, P., Kuhn, R., WÄssle, H. & BrandstÄtter, J. H. (1999) Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor. Proceedings of the National Academy of Sciences of the USA 96, 9909–9914.

    Google Scholar 

  • Lam, D. M. K. (1975) Synaptic chemistry of identified cells in the vertebrate retina. Cold Spring Harbor Symposium Quantitative Biology 40, 571–579.

    Google Scholar 

  • Lambrecht, H.-G. & Koch, K.-W. (1991) A 26 kD calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO J 10, 793–798.

    Google Scholar 

  • Larison, R. D. & Bremiller, R. (1990) Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development 109, 567–576.

    Google Scholar 

  • Lasater, E. M., Watling, K. J. & Dowling, J. E. (1983) Vasoactive intestinal peptide alters membrane potential and cyclic nucleotide levels in retinal horizontal cells. Science 221, 1070–1071.

    Google Scholar 

  • Li, H., Marshak, D. W., Dowling, J. E., & Lam, D. M. K. (1986) Colocalization of immunoreactive substance P and neurotensin in amacrine cells of the goldfish retina. Brain Research 366, 307–313.

    Google Scholar 

  • Li, L. (2001) Genetic and epigenetic analysis of visual system functions of zebrafish. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) Amsterdam: Elsevier; Progress in Brain Research 131, 555-563.

    Google Scholar 

  • Li, L. & Dowling, J. E. (2000) Effects of dopamine depletion on visual sensitivity of zebrafish. Journal of Neuroscience 20, 1893–1903.

    Google Scholar 

  • Lin, C.-T., Li, H.-Z. & Wu, J.-Y. (1983) Immunocytochemical localization of L-glutamate decarboxylase, gammaaminobutyric acid transaminase, cysteine sulfinic acid decarboxylase, aspartate aminotransferase and somatostatin in rat retina. Brain Research 270, 273–283.

    Google Scholar 

  • Lin, Z. S. & Yazulla, S. (1994a) Depletion of retinal dopamine increases brightness perception in goldfish. Visual Neuroscience 11, 683–693.

    Google Scholar 

  • Lin, Z. S. & Yazulla, S. (1994b) Heterogeneity of GABAA receptors in goldfish retina. Journal of Comparative Neurology 345, 429–439.

    Google Scholar 

  • Linser, P. J., Smith, K. & Angelides, K. (1985) A comparative analysis of glial and neuronal markers in the retina of fish: Variable character of horizontal cells. Journal of Comparative Neurology 237, 264–272.

    Google Scholar 

  • Mack, A. F., Germer, A., Janke, C. & Reichenbach, A. (1998) Muller (glial) cells in the teleost retina: Consequences of continuous growth. Glia 22, 306–313.

    Google Scholar 

  • Malicki, J. (2000) Harnessing the power of forward genetics-analysis of neuronal diversity and patterning in the zebrafish retina. Trends in Neurosciences 23, 531–541.

    Google Scholar 

  • Marc, R. E. & Cameron, D. A. (2001) A molecular phenotype atlas of the zebrafish retina. Journal of Neurocytology 30, 593–654.

    Google Scholar 

  • Marc, R. E. & Lam, D. M. K. (1981) Glycinergic pathways in the goldfish retina. Journal of Neuroscience 1, 152–165.

    Google Scholar 

  • Marc, R. E., Liu, W.-L. S., Scholz, K. & Muller, J. F. (1988) Serotonergic and serotonin-accumulating neurons in the goldfish retina. Journal of Neuroscience 8, 3427–3450.

    Google Scholar 

  • Marshak, D. W. (1992) Peptidergic neurons of teleost retinas. Visual Neuroscience 8, 137–144.

    Google Scholar 

  • Marshak, D. W. & Dowling, J. E. (1987) Synapses of cone horizontal cell axons in goldfish retina. Journal of Comparative Neurology 256, 430–443.

    Google Scholar 

  • Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukada, Y., Sasaki, H., Hiroi, K., Nakamura, Y. & Shigemoto, R. (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGlur6 gene. Cell 80, 757–765.

    Google Scholar 

  • Mathieu, M., Tagliafierro, G., Angelini, G. & Vallarino, M. (2001) Organization of vasoactive intestinal peptide-like immunoreactive system in the brain, olfactory organ and retina of the zebrafish, Danio rerio, during development. Brain Research 888, 235–247.

    Google Scholar 

  • Mccormack, C. A. & Mcdonnell, M. T. (1994) Abnormal dorsal light response in teleost fish after intraocular injection of 6-hydroxydopamine. Journal of Fish Biology 45, 515–525.

    Google Scholar 

  • Mcintosh, H. H., Song, C. & Howlett, A. C. (1998) CB1 cannabinoid receptor: Cellular regulation and distribution in N18TG2 neuroblastoma cells. Molecular Brain Research 53, 163–173.

    Google Scholar 

  • Mechoulam, R., Fride, E. & Di Marzo, V. (1998) Endocannabinoids. European Journal of Pharmacology 359, 1–18.

    Google Scholar 

  • Mora-Ferrer, C., Yazulla, S., Studholme, K. M. & Haak-Frendscho, M. (1999) Dopamine D1-receptor immunolocalization in goldfish retina. Journal of Comparative Neurology 411, 704–714.

    Google Scholar 

  • Muske, L. E., Dockray, G. J., Chohan, K. S. & Stell, W. K. (1987) Segregation of FMRF amide-immunoreactive efferent fibers from NPYimmunoreactive amacrine cells in goldfish retina. Cell & Tissue Research 247, 299–307.

    Google Scholar 

  • Neal, M. & Cunningham, J. (1994) Modulation by endogenous ATP of the light-evoked release of ACh from retinal cholinergic neurones. British Journal of Pharmacology 113, 1085–1087.

    Google Scholar 

  • Neal, M. J., Cunningham, J. R. & Dent, Z. (1998) Modulation of extracellular GABA levels in the retina by activation of glial P2X-purinoceptors. British Journal of Pharmacology 124, 317–322.

    Google Scholar 

  • Negishi, K., Kato, S., Teranishi, T., Kiyama, H., Katayama, Y. & Tohyama, M. (1985) Socalled interplexiform cells immunoreactive to tyrosine hydroxylase or somatostatin in rat retina. Brain Research 346, 136–140.

    Google Scholar 

  • Negishi, K. & Wagner, H. J. (1995) Differentiation of photoreceptors, glia, and neurons in the retina of the cichlid fish Aequidens pulcher;An immunocytochemical study. Developmental Brain Research 89, 87–102.

    Google Scholar 

  • Nelson, R., Janis, A. T., Behar, T. N. & Connaughton, V. P. (2001) Physiological responses associated with kainate receptor immunoreactivity in dissociated zebrafish retinal neurons: A voltage probe study. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) Amsterdam: Elsevier; Progress in Brain Research 131, 255-265.

    Google Scholar 

  • Neuhauss, S. C., Biehlmaier, O., Seeliger, M. W., Das, T., Kohler, K., Harris, W. A. & Baier, H. (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. Journal of Neuroscience 19, 8603–8615.

    Google Scholar 

  • Nguyen-Legros, J., Martin-Martinelli, E., Simon, A., Denoroy, L. & Vigny, A. (1986) Colocalization of tyrosine-hydroxylase and phenylethanolamine-N-methyltransferase immunoreactivity in the rat retina: A re-examination using double labeling on semi-thin sections. Experimental Eye Research 43, 575–584.

    Google Scholar 

  • Nishimura, Y., Schwartz, M. L. & Rakic, P. (1986) GABA and GAD immunoreactivity of photoreceptor terminals in primate retina. Nature (London) 320, 753–756.

    Google Scholar 

  • Oertel, W. H., Schmechel, D. E., Tappaz, A. & Kopin, I. J. (1981) Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-antibody complex. Neuroscience 6, 2689–2700.

    Google Scholar 

  • Osborne, N. N., Nicholas, D. A., Cuello, A. C. & Dockray, G. J. (1981) Localization of cholecystokinin immunoreactivity in amacrine cells of the retina. Neuroscience Letters 26, 31–35.

    Google Scholar 

  • Osborne, N. N., Nicholas, D. A., Dockray, G. J. & Cuello, A. C. (1982) Cholecystokinin and substance P immunoreactivity in retinas of rats, frogs, lizards and chicks. Experimental Eye Research 34, 639–649.

    Google Scholar 

  • Osborne, N. N., Patel, S., Terenghi, G., Allen, J. M., Polak, J. M. & Bloom, S. R. (1985) Neuropeptide Y (NPY)-like immunoreactive amacrine cells in retinas of frog and goldfish. Cell & Tissue Research 241, 651–656.

    Google Scholar 

  • Patrecelli, M. P., Lashuel, H. A., Giang, D. K., Kelly, J. W. & Cravatt, B. F. (1998) Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: Identification of the transmembrane domain as a site for oligomerization. Biochemistry 37, 15177–15187.

    Google Scholar 

  • Peng, Y. W., Blackstone, C. D. Huganir, R. L. & Yau, K. W. (1995) Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66, 483–497.

    Google Scholar 

  • Peterson, R. E., Fadool, J. M., Mcclintock, J. & Linser, P. J. (2001) Muller cell differentiation in the zebrafish neural retina: Evidence of distinct early and late stages in cell maturation. Journal of Comparative Neurology 429, 530–540.

    Google Scholar 

  • Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. (1984) Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proceedings of the National Academy of Science of the USA 81, 7224–7227.

    Google Scholar 

  • Pinelli, C., D'Aniello, B., Sordino, P., Meyer, D. L., Fiorentino, M. & Rastogi, R. K. (2000) Comparative immunocytochemical study of FMRFamide neuronal system in the brain of Brachydanio rerio and Acipenser ruthenus during development. Developmental Brain Research 119, 195–208.

    Google Scholar 

  • Richards, J. G., Schoch, P, Haring, P., Takacs, B. & Mohler, H. (1987) Resolving GABAA/benzodiazepine receptors: Cellular and subcellular localization in the CNS with monoclonal antibodies. Journal of Neuroscience 7, 1866–1876.

    Google Scholar 

  • Sandell, J. H., Martin, S. C. & Heinrich, G. (1994) The development of GABA immunoreactivity in the retina of the zebrafish (Brachydanio rerio). Journal of Comparative Neurology 345, 596–601.

    Google Scholar 

  • Santos, P. F., Caramelo, O. L., Carvalho, A. P. & Duarte, C. B. (2000) Adenosine A1 receptors inhibit Ca2+ channels coupled to the release of ACh, but not of GABA, in cultured retina cells. Brain Research 852, 10–15.

    Google Scholar 

  • SassoÈ-Pognetto, M., Kirsch, J., GrÜnert, U., Greferath, U., Fritschy, J. M., MÖhler, H., Betz, H. & WÄssle, H. (1995) Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. Journal of Comparative Neurology 357, 1–14.

    Google Scholar 

  • Schoch, P., HÄring, P., Takacs, B., StÄhli, C. & MÖhler, H. (1984) A GABA/benzodiazepine receptor complex from bovine brain: Purification, reconstitution and immunological characterization. Journal of Receptor Research 4, 189–200.

    Google Scholar 

  • Schultz, K., Goldman, D. J., Ohtsuka, T., Hirano, J., Barton, L. & Stell, W. K. (1997) Identification and localization of an immunoreactive AMPA-type glutamate receptor subunit (GluR4) with respect to identified photoreceptor synapses in the outer plexiform layer of goldfish retina. Journal of Neurocytology 26, 651–666.

    Google Scholar 

  • Schultz, K., Janssen-Bienhold, U. & Weiler, R. (2001) Selective synaptic distribution of AMPA and kainate receptor subunits in the outer plexiform layer of the carp retina. Journal of Comparative Neurology 435, 433–449.

    Google Scholar 

  • Sheng, M., Tsaur, M. L., Jan, Y. N. & Jan, L. Y. (1992) Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron 9, 271–284.

    Google Scholar 

  • Stell, W. K., Ishida, A. T. & Lightfoot, D. O. (1977) Structural basis for On-and Off-center responses in retinal bipolar cells. Science 198, 1269–1271.

    Google Scholar 

  • Stell, W. K., Walker, S. E., Chohan, K. S. & Ball, A. K. (1984) The goldfish nervous terminalis: A luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway. Proceedings of the National Academy of Science of the USA 81, 940–944.

    Google Scholar 

  • Straiker, A., Stella, N., Piomelli, D., Mackie, K., Karten, H. J. & Maguire, G. (1999) Cannabinoid CB1 receptors and ligands in vertebrate retina: Localization and function of an endogenous signaling system. Proceedings of the National Academy of Sciences of the USA 96, 14565–14570.

    Google Scholar 

  • Studholme, K., Glaser, S., Deutsch, D. G. & Yazulla, S. (2000) Retinal cannabinoids: Comparative distribution of 3H-anadamide uptake and fatty acid amide hydrolase immunoreactivity in goldfish retina. Investigative Ophthalmology & Visual Science (Suppl.) 41, S296.

    Google Scholar 

  • Studholme, K. M. & Yazulla, S. (1997) 3H-adenosine uptake selectively labels rod horizontal cells in goldfish retina. Visual Neuroscience 14, 207–212.

    Google Scholar 

  • Su, Y. Y. T., Fry, K. R., Lam, D. M. K. & Watt, C. B. (1986) Enkephalin in the goldfish retina. Cellular and Molecular Neurobiology 6, 331–348.

    Google Scholar 

  • Su, Y. Y. T., Wu, J.-Y. & Lam, D. M. K. (1979) Purification of L-glutamic acid decarboxylase from catfish brain. Journal of Neurochemistry 33, 169–179.

    Google Scholar 

  • Subhedar, N., Cerda, J. & Wallace, R. A. (1996) Neuropeptide Y in the forebrain and retina of the killifish, Fundulus heteroclitus. Cell and Tissue Research 283, 313–323.

    Google Scholar 

  • Suzuki, S. & Kaneko, A. (1990) Identification of bipolar cell subtypes by protein kinase C-like immunoreactivity in the goldfish retina. Visual Neuroscience 5, 223–230.

    Google Scholar 

  • Teranishi, T., Negishi, K., Hidaka, S. & Naka, K. (1987) Dendritic morphology of indoleamine cells revealed by intracellular injection of LuciferYellow in fixed carp retina. Neuroscience 22, 323–329.

    Google Scholar 

  • Tornqvist, K. & Ehinger, B. (1983) Glucagon immunoreactive neurons in the retina of different species. Graefes Archive for Clinical & Experimental Ophthalmology 220, 1–5.

    Google Scholar 

  • Triller, A., Cluzeaud, F. & Korn, H. (1987) Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. Journal of Cell Biology 104, 947–956.

    Google Scholar 

  • Tumosa, N., Eckstein, F. & Stell, W. K. (1984) Immunocytochemical localization of putative cholinergic neurons in the goldfish retina. Neuroscience Letters 48, 255–259.

    Google Scholar 

  • Tumosa, N. & Stell, W. K. (1986) Choline acetyltransferase immunoreactivity suggests that ganglion cells in the goldfish retina are not cholinergic. Journal of Comparative Neurology 244, 267–275.

    Google Scholar 

  • Vandenbranden, C. A. V., Kamphuis, W., Cardozo, B. N. & Kamermans, M. (2000b) Expression and localization of ionotropic glutamate receptor subunits in the goldfish retina-an in situ hybridization and immunocytochemistry study. Journal of Neurocytology 29, 729–742.

    Google Scholar 

  • Vandenbranden, C. A. V., Yazulla, S., Studholme, K. M., Kamphuis, W. & Kamermans, M. (2000a) Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina. Journal of Comparative Neurology 423, 440–451.

    Google Scholar 

  • Van Haesendonck, E., Marc, R. E. & Missotten, L. (1993) New aspects of dopaminergic interplexiform cell organization in the goldfish retina. Journal of Comparative Neurology 333, 503–518.

    Google Scholar 

  • Vardi, N., Masarachia, P. & Sterling, P. (1992) Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina. Journal of Comparative Neurology 320, 394–397.

    Google Scholar 

  • Vaughan, D. K. & Lasater, E. M. (1990) Glial and neuronal markers in bass retinal horizontal and Müller cells. Brain Research 537, 131–140.

    Google Scholar 

  • Vitanova, L., Kupenova, P., Haverkamp, S., Popova, E., Mitova, L. & WÄssle, H. (2001) Immunocytochemical and electrophysiological characterization of GABA receptors in the frog and turtle retina. Vision Research 41, 691–704.

    Google Scholar 

  • Vitorica, J., Park, D., Chin, G. & De Blas, A. L. (1988) Monoclonal antibodies and conventional antisera to the GABAA receptor/benzodiazepine receptor/ Cl-channel complex. Journal of Neuroscience 8, 615–622.

    Google Scholar 

  • Wagner, H.-J. & Wagner, E. (1988) Amacrine cells of a teleost fish, the roach (Rutilus rutilis): A Golgi study on differentiation and layering. Philosophical Transactions of the Royal Society of London, B 321, 263–324.

    Google Scholar 

  • Wagner, H.-J. & Zeutzius, I. (1987) Amacrine cells with neurotensin-and somatostatin-like immunoreactivity in three species of teleosts with different colour vision. Cell and Tissue Research 248, 663–673.

    Google Scholar 

  • Watling, K. J. & Dowling, J. E. (1983) Effects of vasoactive intestinal peptide and other peptides on cyclic AMPaccumulation in intact pieces and isolated horizontal cells of the teleost retina. Journal of Neurochemistry 41, 1205–1213.

    Google Scholar 

  • Wenthold, R. J., Zemple, J., Parakkal, M. A., Reeks, K. A. & Altschuler, R. A. (1986) Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Research 380, 7–18.

    Google Scholar 

  • Yamada, T., Marshak, D., Basinger, S., Walsh, J., Morley, J. & Stell, W. K. (1980) Somatostatinlike immunoreactivity in the retina. Proceedings of the National Academy of Science of the USA 3, 1691–1695.

    Google Scholar 

  • Yazulla, S. (1986) GABAergic mechanisms in the retina. Progress in Retinal Research 5, 1–52.

    Google Scholar 

  • Yazulla, S. (1991) The mismatch problem for GABAergic amacrine cells in goldfish retina: Resolution and other issues. Neurochemical Research 16, 327–339.

    Google Scholar 

  • Yazulla, S., Mosinger, J. & Zucker, C. (1984) Two types of pyriformAbamacrine cells in the goldfish retina: An EM analysis of 3H-GABA uptake and somatostatinlike immunoreactivity. Brain Research 321, 352–356.

    Google Scholar 

  • Yazulla, S. & Studholme, K. M. (1991a) Glycinereceptor immunoreactivity in retinal bipolar cells is postsynaptic to glycinergic and GABAergic amacrine cell synapses. Journal of Comparative Neurology 310, 11–20.

    Google Scholar 

  • Yazulla, S. & Studholme, K. M. (1991b) Glycinergic interplexiform cells make synaptic contact with amacrine cell bodies in goldfish retina. Journal of Comparative Neurology 310, 1–10.

    Google Scholar 

  • Yazulla, S. & Studholme, K. M. (1995) Volume transmission of dopamine may modulate light adaptive plasticity of horizontal cell dendrites in the recovery phase following dopamine depletion in goldfish retina. Visual Neuroscience 12, 827–836.

    Google Scholar 

  • Yazulla, S. & Studholme, K. M. (1997) Differential reinnervation of retinal bipolar cell dendrites and axon terminals by dopamine interplexiform cells following dopamine depletion with 6-OHDA. Journal of Comparative Neurology 382, 535–545.

    Google Scholar 

  • Yazulla, S. & Studholme, K. M. (1998) Differential distribution of Shaker-like and Shab-like K+-channel subunits in goldfish retina and retinal bipolar cells. Journal of Comparative Neurology 396, 131–140.

    Google Scholar 

  • Yazulla, S. & Studholme, K. M. (1999) Colocalization of Shaker A-type K+channel (Kv1.4) and AMPA-glutamate receptor (GluR4) immunoreactivities to dendrites of OFF bipolar cells of goldfish retina. Journal of Neurocytology 28, 63–73.

    Google Scholar 

  • Yazulla, S., Studholme, K. M., Fan, S. F. & Mora-Ferrer, C. (2001) Neuromodulation of voltage-dependent K+ channels in bipolar cells: Immunocytochemical and electrophysiological studies. In Concepts and Challenges in Retinal Biology: A Tribute to John E. Dowling (edited by Kolb, H., Ripps, H. & Wu, S.) pp. 201–214. Amsterdam: Elsevier.

    Google Scholar 

  • Yazulla, S., Studholme, K. M., Mcintosh, H. H. & Deutsch, D. G. (1999) Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina. Journal of Comparative Neurology 415, 80–90.

    Google Scholar 

  • Yazulla, S., Studholme, K. M., Mcintosh, H. H. & Fan, S. F. (2000) Cannabinoid receptors on goldfish retinal bipolar cells: Electron-microscope immunocytochemistry and whole-cell recordings. Visual Neuroscience 17, 391–401.

    Google Scholar 

  • Yazulla, S., Studholme, K. M. & Pinto, L. H. (1997) Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice. Vision Research 37, 3471–3482.

    Google Scholar 

  • Yazulla, S., Studholme, K. M., Vitorica, J. & De Blas, A. L. (1989) Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. Journal of Comparative Neurology 280, 15–26.

    Google Scholar 

  • Yazulla, S., Studholme, K. M. & Wu, J.-Y. (1986) Comparative distribution of 3H-GABA uptake and GAD immunoreactivity in goldfish retinal amacrine cells: A double-label analysis. Journal of Comparative Neurology 244, 149–162.

    Google Scholar 

  • Yazulla, S., Studholme, K. M. & Zucker, C. L. (1985) Synaptic organization of substance P-like immunoreactive amacrine cells in goldfish retina. Journal of Comparative Neurology 231, 232–238.

    Google Scholar 

  • Yazulla, S. & Zucker, C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Visual Neuroscience 1, 13–30.

    Google Scholar 

  • Yoshida, K., Watanabe, D., Ishikane, H., Tachibana, M., Pastan, I. & Nakanishi, S. (2001) A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771–780.

    Google Scholar 

  • Young, L. H. Y. & Dowling, J. E. (1989) Localization of cyclic adenosine monophosphate in the teleost retina: Effects of dopamine and prolonged darkness. Brain Research 504, 57–63.

    Google Scholar 

  • Zenisek, D., Henry, D., Studholme, K. M., Yazulla, S. & Matthews, G. (2001) Voltagedependent sodium channels expressed in nonspiking retinal bipolar cells. Journal of Neuroscience 21, 4543–4550.

    Google Scholar 

  • Zucker, C., Yazulla, S. & Wu, J. Y. (1984) Noncorrespondence of 3H-GABA uptake and GAD localization in goldfish amacrine cells. Brain Research 298, 154–158.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazulla, S., Studholme, K.M. Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry. J Neurocytol 30, 551–592 (2001). https://doi.org/10.1023/A:1016512617484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016512617484

Keywords

Navigation