Skip to main content
Log in

The fate of competing beneficial mutations in an asexual population

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In sexual populations, beneficial mutations that occur in different lineages may be recombined into a single lineage. In asexual populations, however, clones that carry such alternative beneficial mutations compete with one another and, thereby, interfere with the expected progression of a given mutation to fixation. From theoretical exploration of such ‘clonal interference’, we have derived (1) a fixation probability for beneficial mutations, (2) an expected substitution rate, (3) an expected coefficient of selection for realized substitutions, (4) an expected rate of fitness increase, (5) the probability that a beneficial mutation transiently achieves polymorphic frequency (≥ 1%), and (6) the probability that a beneficial mutation transiently achieves majority status. Based on (2) and (3), we were able to estimate the beneficial mutation rate and the distribution of mutational effects from changes in mean fitness in an evolving E. coli population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barton, N.H., 1993. The probability of fixation of a favoured allele in a subdivided population. Genet. Res. 62: 149-157.

    Google Scholar 

  • Barton, N.H., 1994. The reduction in fixation probability caused by substitutions at linked loci. Genet. Res. 64: 199-208.

    Article  Google Scholar 

  • Barton, N.H., 1995. Linkage and the limits to natural selection. Genetics 140: 821-841.

    PubMed  CAS  Google Scholar 

  • Crow, J.F. & M. Kimura, 1965. Evolution in sexual and asexual populations. Am. Nat. 99: 439-450.

    Article  Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. New York: Harper & Row.

    Google Scholar 

  • Drake, J.W., 1991. A constant rate of spontaneous mutation in DNAbased microbes. Proc. Natl. Acad. Sci. USA 88: 7160-7164.

    Article  PubMed  CAS  Google Scholar 

  • Elena, S.F., V.S. Cooper & R.E. Lenski, 1996. Punctuated evolution caused by selection of rare beneficial mutations. Science 272: 1802-1804.

    PubMed  CAS  Google Scholar 

  • Elena, S.F., L. Ekunwe, N. Hajela, S.A. Oden & R.E. Lenski, 1998. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102/103: 349-358.

    Article  PubMed  Google Scholar 

  • Ewens, W.J., 1969. Population Genetics. London: Methuen Press.

    Google Scholar 

  • Felsenstein, J., 1974. The evolutionary advantage of recombination. Genetics 78: 737-756.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1988. Sex and the evolution of recombination, pp. 74-86 in The Evolution of Sex, edited by R.E. Michod and B.R. Levin. Sunderland, Mass.: Sinauer Associates.

    Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Gillespie, J.H., 1981. Mutation rate modification in a random environment. Evolution 35: 468-476.

    Article  Google Scholar 

  • Gillespie, J.H., 1991. The Causes of Molecular Evolution. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Haigh, J., 1978. The accumulation of deleterious genes in a population - Muller's ratchet. Theor. Pop. Biol. 14: 251-267.

    Article  CAS  Google Scholar 

  • Haldane, J.B.S., 1927. The mathematical theory of natural and artificial selection. Proc. Camb. Phil. Soc. 23: 838-844.

    Article  Google Scholar 

  • Holmes, E.C., L.Q. Zhang, P. Simmonds, C.A. Ludlam & A.J.L. Brown, 1992. Convergent and divergent sequence evolution in the surface envelope glycoprotein of human immunodeficiency virus type 1 within a single infected patient. Proc. Natl. Acad. Sci. USA 89: 4835-4839.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, K., H. Matsuda, Y. Iwasa & A. Sasaki, 1989. Evolutionarily stable mutation rate in a periodically changing environment. Genetics 121: 163-174.

    PubMed  Google Scholar 

  • Keightley, P.D., 1991. Genetic variance and fixation probabilities at quantitative trait loci in mutationselection balance. Genet. Res. 58: 139-144.

    Google Scholar 

  • Kimura, M., 1979. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci. USA 76: 3440-3444.

    Article  PubMed  Google Scholar 

  • Leigh, E.G., 1970. Natural selection and mutability. Am. Nat. 104: 301-305.

    Article  Google Scholar 

  • Lenski, R.E & M. Travisano, 1994. Dynamics of adaptation and diversification: a 10,000generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91: 6808-6814.

    Article  PubMed  CAS  Google Scholar 

  • Lenski, R.E., M.R. Rose, S.C. Simpson & S.C. Tadler, 1991. Longterm experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. Am. Nat. 138: 1315- 1341.

    Article  Google Scholar 

  • Manning, J.T. & D.J. Thompson, 1984. Muller's ratchet accumulation of favourable mutations. Acta Biotheor. 33: 219-225.

    Article  Google Scholar 

  • Maynard Smith, J., 1968. Evolution in sexual and asexual populations. Am. Nat. 102: 469-473.

    Article  Google Scholar 

  • Muller, H.J., 1932. Some genetic aspects of sex. Am. Nat. 8: 118- 138.

    Article  Google Scholar 

  • Muller, H.J., 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 2-9.

    Google Scholar 

  • Otto, S.P. & M.C. Whitlock, 1997. The probability of fixation in populations of changing size. Genetics 146: 723-733.

    PubMed  CAS  Google Scholar 

  • Pamilo, P., M. Nei & W. Li, 1987. Accumulation of mutations in sexual and asexual populations. Genet. Res. 49: 135-146.

    PubMed  CAS  Google Scholar 

  • Peck, J.R., 1994. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137: 597-606.

    PubMed  CAS  Google Scholar 

  • Peck, J.R., G. Barreau & S.C. Heath, 1997. Imperfect genes, Fisherian mutation and the evolution of sex. Genetics 145: 1171-1199.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerrish, P.J., Lenski, R.E. The fate of competing beneficial mutations in an asexual population. Genetica 102, 127–144 (1998). https://doi.org/10.1023/A:1017067816551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017067816551

Navigation