Skip to main content
Log in

The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We report the isolation and characterization of PERK1 (Proline Extensin-like Receptor Kinase 1), a novel plant RLK from Brassica napusthat is predicted to consist of a proline-rich extracellular domain with sequence similarity to extensins, a transmembrane region, and a catalytic domain possessing serine/threonine kinase activity. Database searches with the predicted PERK1 amino acid sequence also led to the identification of a predicted family of related genes in the Arabidopsis genome. Using biolistic bombardment of onion epidermal cells, we have shown that a PERK1-GFP fusion is localized to the plasma membrane as predicted for a receptor kinase. Given the similarity of PERK1's extracellular domain to extensins, a possible role in plant defense responses was investigated by treating B. napus tissue with mechanical stresses and infection with the fungal pathogen, Sclerotinia sclerotiorum. Various wounding stimuli resulted in a dramatic and rapid accumulation of PERK1 mRNA. Levels of PERK1 mRNA also increased moderately in response to infection by the fungal pathogen S. sclerotiorum. Given the kinetics of PERK1 mRNA accumulation in response to these treatments, PERK1 may be involved early on in the general perception and response to a wound and/or pathogen stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Becraft, P.W., Stinard, P.S. and McCarty, D.R. 1996. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273: 1406–1409.

    Google Scholar 

  • Bischoff, F., Vahlkamp, L., Molendijk, A. and Palme K. 2000. Localization of AtROP4 and AtROP6 and interaction with the guanine nucleotide dissociation inhibitor AtRhoGDI1 from Arabidopsis. Plant Mol. Biol. 42: 515–530.

    Google Scholar 

  • Bögre, L., Ligterink, W., Heberle-Bors, E., Hirt, H. 1996. Mechanosensors in plants. Nature 383: 489–490.

    Google Scholar 

  • Bögre, L., Ligterrink, W., Meskiene, I., Barker, P.J., HeberieBors, E., Huskisson, N.S. and Hirt, H. 1997. Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell 9: 75–83.

    Google Scholar 

  • Bowles, K.J. 1990. Defense-related proteins in higher plants. Annu. Rev. Biochem. 59: 873–907.

    Google Scholar 

  • Boyle, W.J., van der Geer, P. and Hunter, T. 1991. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Meth. Enzymol. 201: 110–149.

    Google Scholar 

  • Braam, J. and Davis, R.W. 1990. Rain-, wind-and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60: 357–364.

    Google Scholar 

  • Braam, J., Sistrunk, M.L., Polisensky, D.H., Xu, W., Purugganan, M.M., Antosiewicz, D.M., Campbell, P. and Johnson, K.A. 1997. Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes. Planta 203: S35–S41.

    Google Scholar 

  • Braun, D.M. and Walker, J.C. 1996. Plant transmembrane receptors: new pieces in the signalling puzzle. Trends Biochem. Sci. 21: 70–73.

    Google Scholar 

  • Cassab, G.I. 1998. Plant cell wall proteins. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 49: 281–309.

    Google Scholar 

  • Cessna, S.G., Sears, V.E., Dickman, M.B. and Low, P.S. 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12: 2191–2199.

    Google Scholar 

  • Chuck, G., Lincoln, C. and Hake S. 1996. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8: 1277–1289.

    Google Scholar 

  • Clark, S., Williams, R.W. and Meyerowitz, E.M. 1997. The CLAVATA1 gene encodes a putative receptor-kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89: 575–585.

    Google Scholar 

  • Cock, J.M., Swarup, R. and Dumas, C. 1997. Natural antisense transcripts of the S locus receptor kinase gene and related sequences in Brasscia oleracea. Mol. Gen. Genet. 255: 514–524.

    Google Scholar 

  • Dwyer, K.G., Kandasamy, M.K., Mahosky, D.I., Acciai, J., Kudish, B.I., Miller, J.E., Nasrallah, M.E. and Nasrallah, J.B. 1994. A superfamily of S locus-related sequences in Arabidopsis: diverse structures and expression patterns. Plant Cell 6: 1829–1843.

    Google Scholar 

  • Dyer, J.M. and Mullen, R.T. 2001. Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett. 247: 1–4.

    Google Scholar 

  • Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.

    Google Scholar 

  • Fraissinet-Tachet, L, and Fevre, M. 1996. Regulation of galacturonic acid and pectinolytic enzyme production by Sclerotinia sclerotiorum. Curr. Microbiol. 33: 49–53.

    Google Scholar 

  • Friedrichsen, D.M., Joazeiro C.A.P., Li, J., Hunter T. and Chory J. 2000. Brassinosteroid-Insensitive-1 is a ubiquitously expressed leucine-rich receptor serine/threonine kinase. Plant Physiol. 123: 1247–1255.

    Google Scholar 

  • Gasser, C.S., Gunnin, D.A., Budelier, K.A. and Brown, S.M. 1990. Structure and expression of cytosolic cyclophilin peptidyl-proyl-cis-trans isomerase of higher plants and the production of active tomato cyclophilin in Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 9519–9523.

    Google Scholar 

  • Goring, D.R. and Rothstein, S.J. 1992. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell 4: 1273–1281.

    Google Scholar 

  • Hanks, S.K. and Quinn, A.M. 1991. Protein kinase catalytic domain sequence database: identification of conserved features of 1° structure and classification of family members. Meth. Enzymol. 200: 38–62.

    Google Scholar 

  • He, Z.H., Fujuki, M. and Kohorn, B.D. 1996. A cell wall-associated, receptor-like kinase. J. Biol. Chem. 271: 19789–19793.

    Google Scholar 

  • He, Z.H., He, D. and Kohorn, B.D. 1998. Requirement for the induced expression of a cell wall-associated receptor kinase for survival during the pathogen response. Plant J. 14: 55–63.

    Google Scholar 

  • He, Z.H., Cheeseman, I., He, D. and Kohorn, B.D. 1999. A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Mol. Biol. 39: 1189–1196.

    Google Scholar 

  • Hervé, C., Dabos, P., Galaud, J.P., Rougé, P. and Lescure, B. 1996. Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J. Mol. Biol. 258: 778–788.

    Google Scholar 

  • Hildmann, T., Ebneth, M., Peña-Cortés, H., Sánchez-Serrano, J.J., Willmitzer, L. and Prat, S. 1992. General roles for abscisic acid and jasmonic acid in gene activation as a result of mechanical damage Plant Cell 4: 1157–1170.

    Google Scholar 

  • Hirt, H. 2000. MAP kinases in plant signal transduction. In: H. Hirt (Ed.), MAP Kinases in Plant Signal Transduction: Results, Problems and Cell Differences, Springer-Verlag, Heidelberg, Germany, pp. 1–9.

    Google Scholar 

  • Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T. and Shinozaki, K. 2000a. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24: 655–665.

    Google Scholar 

  • Ichimura, K., Mizoguchi T., Yoshida, T., Yuasa, T. and Shinozaki, K. 2000b. Protein phosphorylation and dephosphorylation in environmental stress responses in plants. In: J. Callow (Ed.) Plant Protein Kinases: Advances in Botanical Research, Academic Press, San Diego, CA, pp. 355–370.

    Google Scholar 

  • Jinn, T.L., Stone, J.M. and Walker, J.C. 2000. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev. 14: 108–117.

    Google Scholar 

  • Jonak, C., Beisteiner, D., Beyerly, J., and Hirt, H. 2000. Wound-induced expression and activation of WIG, a novel glycogen synthase kinase 3. Plant Cell 12: 1467–1475.

    Google Scholar 

  • Jones, J.D.G., Dunsmuir, P. and Bedbrook, J. 1985. High level expression of introduced chimeric genes in regenerated transformed plants. EMBO J. 4: 2411–2418.

    Google Scholar 

  • Kim, H.S., Hartman, G.L., Manandhar, J.B., Graef, G.L., Steadman, J.R., and Diers, B.W. 2000. Reaction of soybean cultivars to Sclerotinia stem rot in filed, greenhouse, and laboratory examinations. Crop Sci. 40: 665–669.

    Google Scholar 

  • Kohorn, B.D., Lane, S. and Smith, T.A. 1992. An Arabidopsis serine/ threonine kinase homologue with an epidermal growth factor repeat selected in yeast for its specificity for a thylakoid membrane protein. Proc. Natl. Acad. Sci. USA 89: 10989–10992.

    Google Scholar 

  • Kudla, J., Xu, Q., Harter, K., Gruissem, W. and Luan, S. 1999. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA. 96: 4718–4723.

    Google Scholar 

  • Kyte, J. and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.

    Google Scholar 

  • Lally, D., Ingmire, P., Tong, H.Y. and He Z.H. 2001. Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 13: 1317–1331.

    Google Scholar 

  • Lease, K., Ingham, E. and Walker, J.C. 1998. Challenges in understanding RLK function. Curr. Opin. Plant Biol. 1: 388–392.

    Google Scholar 

  • Lee, J.K., Suh, M.C., Kim, S., Kwon, J.K., Kim, M., Paek, K.H., Choi, D. and Lom B.D. 2001. Molecular cloning of a novel pathogen-inducible cDNA encoding a putative acyl-CoA synthetase from Capsicum annuum L. Plant Mol. Biol. 46: 661–671.

    Google Scholar 

  • Léon, J., Rojo E. and Sánchez-Serrano, J. 2001. Wound signaling in plants. J. Exp. Bot. 52: 1–9.

    Google Scholar 

  • Li, J. and Chroy, J. 1997. A putative leucine rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929–938.

    Google Scholar 

  • Lippuner, V., Chou, I.T., Scott, S.V., Ettinger, W.F., Theg, S.M. and Gasser, C.S. 1994. Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana. J. Biol. Chem. 269: 7863–7868.

    Google Scholar 

  • Liu, Y., Zhang, S. and Klessig, D.F. 2000. Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. Mol. Plant-Microbe Interact. 13: 118–124.

    Google Scholar 

  • Lutcke, H.A., Chow, K.C., Mickel, F.S., Moss, K.A., Kern, H.F. and Scheele, G.A. 1987. Selection of AUG initiation codons differs in plants and animals. EMBO J. 6: 43–48.

    Google Scholar 

  • McCarty, D.R. and Chory, J. 2000. Conservation and innovation in plant signalling pathways. Cell 103: 201–209.

    Google Scholar 

  • Mekhedov, S., De Ilárduya, O.M. and Ohlrogge, J. 2000. Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis. Plant Physiol. 122: 389–401.

    Google Scholar 

  • Memelink, J., Swords, K.M.M., de Kam, R.J., Schilperoort, R.A., Hoge, J.H.C. and Staehelin, L.A. 1993 Structure and regulation of tobacco extensin. Plant J. 4: 1011–1022.

    Google Scholar 

  • Merkouropoulos, G., Barnett, D.C. and Shirsat, A.H. 1999 The Arabidopsis extensin gene is developmentally regulated, is induced by wounding, methyl jasmonate, abscisic acid and salicylic acid, and codes for a protein with unusual motifs. Planta 208: 212–219.

    Google Scholar 

  • Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K. and Shinozaki, K. 1996. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93: 765–769.

    Google Scholar 

  • Pastuglia, M., Roby, D., Dumas, C. and Cock, M. 1997. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9: 49–60.

    Google Scholar 

  • Rodríguez-Concepción, M., Alicia Pérez-García, A. and Béltrán J.P. 2001. Up-regulation of genes encoding novel extracellular proteins during fruit set in pea. Plant Mol. Biol. 46: 373–382.

    Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Sauer, N., Corbin, D.R., Keller, B. and Lamb, C.J. 1990. Cloning and characterization of a wound specific hydroxyproline-rich glycoprotein in Phaseolus vulgaris. Plant Cell Environ. 13: 257–266.

    Google Scholar 

  • Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H. and Ohashi, Y. 1995. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270: 1988–1992.

    Google Scholar 

  • Shirsat, A.H., Wieczoreky, D. and Kozibal, P. 1996. A gene for Brassica napus extensin is differentially expressed on wounding. Plant Mol. Biol. 30: 1291–1300.

    Google Scholar 

  • Shiu, S.H. and Bleecker, A.B. 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98: 10763–10768.

    Google Scholar 

  • Showalter, A.M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5: 9–23.

    Google Scholar 

  • Showalter, A.M., Butt, A.D. and Kim, S. 1992. Molecular details of tomato extensin and glycine rich protein gene expression. Plant Mol. Biol. 19: 205–215.

    Google Scholar 

  • Singer, S.J. 1990. The structure and insertion of integral proteins in the membrane. Annu. Rev. Cell Biol. 6: 247–296.

    Google Scholar 

  • Silva, N.F., Stone, S.L., Christie, L.N., Sulaman, W., Nazarian, K.A., Burnett, L.A., Arnoldo, M.A., Rothstein, S.J. and Goring, D.R. 2001. Expression of the S receptor kinase in self-compatible Brassica napus cv.Westar leads to the allele-specific rejection of self-incompatible Brassica napus pollen. Mol. Genet. Genomics 265: 552–559.

    Google Scholar 

  • Sommerville, C.R. and Ogren, W.L. 1982. Isolation of photorespiration mutants in Arabidopsis thaliana. In: M. Edelman, R.B. Hallick and N.H. Chua (Eds) Methods of Chloroplast Biology, Elsevier Biomedical Press, Amsterdam, pp. 129–138.

    Google Scholar 

  • Song, W.Y., Wang, G.L., Chen, L., Kim, H.S., Pi, L.Y., Gardner, J., Wang, B., Holsten, T., Zhai, W.X., Zhu, L.H., Fauquet, C. and Ronald, P.C. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270: 1804–1806.

    Google Scholar 

  • Stein, J.C., Howlett, B., Boyes, D.C., Nasrallah, M.E. and Nasrallah, J.B. 1991. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc. Natl. Acad. Sci. USA 88: 8816–8820.

    Google Scholar 

  • Stone, J.M. and Walker, J.C. 1995. Plant protein kinase families and signal transduction. Plant Physiol. 108: 451–457.

    Google Scholar 

  • Swarup, R., Dumas, D. and Cock, J.M. 1996. A new class of receptor-like protein kinase gene from Arabidopsis thaliana possessing a domain with similarity of plant lectin genes. Plant Physiol. 111: 347.

    Google Scholar 

  • Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A. and Hinata, K. 2000. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403: 913–916.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24: 4876–4882.

    Google Scholar 

  • Tiré, C., De Rycke, R., De Loose, M., Inzé, D., Van Montagu, M. and Engler, G. 1994. Extensin gene expression is induced by mechanical stimuli leading to local cell wall strengthening in Nicotania plumbaginifolia. Planta 195: 175–181.

    Google Scholar 

  • Tobias, C.M. and Nasrallah, J.B. 1996. An S-locus-related gene in Arabidopsis encodes a functional kinase and produces two classes of transcripts. Plant J. 10: 523–531.

    Google Scholar 

  • Tobias, C.M., Howlett, B. and Nasrallah, J.B. 1992. An Arabidopsis thaliana gene with sequence similarity to the S-locus receptor kinase of Brassica oleracea. Plant Physiol. 99: 284–290.

    Google Scholar 

  • Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F. and Komeda, Y. 1996. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8: 735–746.

    Google Scholar 

  • Trotochaud, A.E., Jeong, S. and Clark, S.E. 2000. CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase. Science 289: 613–617.

    Google Scholar 

  • Wagner, T.A. and Kohorn, B.D. 2001. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13: 303–318.

    Google Scholar 

  • Walker, J.C. 1994. Structure and function of the receptor-like protein kinases of higher plants. Plant Mol. Biol. 26: 1599–1609.

    Google Scholar 

  • Walker, J.C. and Zhang, R. 1990. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature 345: 743–746.

    Google Scholar 

  • Wang, X., Zafian, P., Choudhary, M. and Lawton, M. 1996. The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proc. Natl. Acad. Sci. USA 93: 2598–2602.

    Google Scholar 

  • Weinstein, J.N., Blumenthal, R., Van Renwoude, J., Kempf, C. and Mauser, R.O. 1982. Charge clusters and the orientation of membrane proteins. J. Membr. Biol. 66: 203–212.

    Google Scholar 

  • Wilson, L.G. and Fry, J.L. 1986. Extensins: a major cell wall glycoprotein. Plant Cell Environ. 9: 239–260.

    Google Scholar 

  • Yamamoto, Y.Y., Matsui, M. and Deng, X.W. 1998. Positive feedback in plant signalling pathways. Trend Plant Sci. 3: 374–375.

    Google Scholar 

  • Yang, Y., Shah, J. and Klessig, D.F. 1997. Signal perception and transduction in plant defense responses. Genes Dev. 11: 1621–1639.

    Google Scholar 

  • Zhang, S. and Klessig, D.F. 1998. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc. Natl. Acad. Sci. USA 95: 7225–7230.

    Google Scholar 

  • Zhao, Y., Feng, X.H., Watson, J.C., Bottino, P.J. and Kung, S.D. 1994. Molecular cloning and biochemical characterization of a receptor-like serine/threonine kinase from rice. Plant Mol. Biol. 26: 791–803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, N.F., Goring, D.R. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol Biol 50, 667–685 (2002). https://doi.org/10.1023/A:1019951120788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019951120788

Navigation