Skip to main content
Log in

Nicotinamide- and caspase-mediated inhibition of poly(ADP-ribose) polymerase are associated with p53-independent cell cycle (G2) arrest and apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Poly(ADP-ribose) polymerase (PARP), which is activated by DNA strand breaks, is involved in DNA repair and replication but, during apoptosis, undergoes early caspase-mediated cleavage. Activation of programmed cell death in response to DNA damage may rely on functional p53 protein. Tumor cells are commonly deficient in this oncogene product resulting in resistance to many cytostatic drugs. Here we report that nicotinamide-induced inhibition of poly(ADP-ribosyl)ation and cytokine-induced nitric oxide production both result in a transient increase in p53 levels in pancreatic tumor RINm5F cells. These treatments also induce disruption of the mitochondrial membrane potential (ΔΨm), as revealed using the mitochondrial probe JC-1, followed by PARP cleavage and apoptosis all of which are inhibited by the anti-apoptotic protein Bcl-2. Moreover, PARP-inhibition by nicotinamide or 3-aminobenzamide induces apoptosis and/or cell cycle arrest at the G2 checkpoint in all of four tested tumor cell lines of both mesenchymal and epithelial origin including mouse NIH-3T3 cells and p53 deficient human HeLa and Jurkat cells. Bcl-2 counteracts cytokine-, but not nicotinamide-induced G2 arrest. These findings indicate that both chemical and caspase-mediated inhibition of PARP activity, possibly by interfering with DNA replication and repair, may promote a p53-independent G2 arrest and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rich T, Allen RL, Wyllie AH: Defying death after DNA damage. Nature 407: 777-783, 2000

    Google Scholar 

  2. Vousden KH: p53: Death star. Cell 103: 691-694, 2000

    Google Scholar 

  3. King KL, Cidlowski JA: Cell cycle regulation and apoptosis. Annu Rev Physiol 60: 601-617, 1998

    Google Scholar 

  4. Wahl AF, Donaldson KL, Fairchild C, Lee FY, Foster SA, Demers GW, Galloway DA: Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2: 72-79, 1996

    Google Scholar 

  5. de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Menissier de Murcia J: Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 138: 15-24, 1994

    Google Scholar 

  6. Simbulan-Rosenthal CM, Rosenthal DS, Hilz H, Hickey R, Malkas L, Applegren N, Wu Y, Bers G, Smulson ME: The expression of poly(ADP-ribose) polymerase during differentiation-linked DNA replication reveals that it is a component of the multiprotein DNA replication complex. Biochemistry 35: 11622-11633, 1996

    Google Scholar 

  7. Satoh MS, Lindahl T: Role of poly(ADP-ribose) formation in DNA repair. Nature 356: 356-358, 1992

    Google Scholar 

  8. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94: 7303-7307, 1997

    Google Scholar 

  9. Le Rhun Y, Kirkland JB, Shah GM: Cellular responses to DNA damage in the absence of Poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 245: 1-10, 1998

    Google Scholar 

  10. d'Adda di Fagagna F, Hande MP, Tong WM, Lansdorp PM, Wang ZQ, Jackson SP: Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet 23: 76-80, 1999

    Google Scholar 

  11. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA et al.: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37-43, 1995

    Google Scholar 

  12. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME: Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675-1687, 1998

    Google Scholar 

  13. Kroemer G, Dallaporta B, Resche-Rigon M: The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619-642, 1998

    Google Scholar 

  14. Knip M, Douek IF, Moore WP, Gillmor HA, McLean AE, Bingley PJ, Gale EA: Safety of high-dose nicotinamide: a review. Diabetologia 43: 1337-1345, 2000

    Google Scholar 

  15. Mabley JG, Suarez-Pinzon WL, Hasko G, Salzman AL, Rabinovitch A, Kun E, Szabo C: Inhibition of poly(ADP-ribose)synthetase by gene disruption or inhibition with 5-iodo-6-amino-1,2-benzopyrone protects mice from multiple-low-dose-streptozotocin-induced diabetes. Br J Pharmacol 133: 909-919, 2001

    Google Scholar 

  16. Saldeen J, Welsh N: Nicotinamide-induced apoptosis in insulin producing cells is associated with cleavage of poly(ADP-ribose) polymerase. Mol Cell Endocrinol 139: 99-107, 1998

    Google Scholar 

  17. Saldeen J, Curiel DT, Eizirik DL, Andersson A, Strandell E, Buschard K, Welsh N: Efficient gene transfer to dispersed human pancreatic islet cells in vitro using adenovirus-polylysine/DNA complexes or polycationic liposomes. Diabetes 45: 1197-1203, 1996

    Google Scholar 

  18. Karasuyama H, Melchers F: Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol 18: 97-104, 1988

    Google Scholar 

  19. Deng G, Podack ER: Suppression of apoptosis in a cytotoxic T-cell line by interleukin 2-mediated gene transcription and deregulated expression of the protooncogene bcl-2. Proc Natl Acad Sci USA 90: 2189-2193, 1993

    Google Scholar 

  20. Saldeen J: Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 141: 2003-2010, 2000

    Google Scholar 

  21. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254, 1976

    Google Scholar 

  22. Vindelov LL, Christensen IJ, Nissen NI: A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3: 323-327, 1983

    Google Scholar 

  23. Carlsson C, Borg LA, Welsh N: Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology 140: 3422-3428, 1999

    Google Scholar 

  24. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A: JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411: 77-82, 1997

    Google Scholar 

  25. Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A: Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19: 4293, 1991

    Google Scholar 

  26. Adimoolam S, Lin CX, Ford JM: The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts. J Biol Chem 276: 25813-25822, 2001

    Google Scholar 

  27. Mauricio D, Mandrup-Poulsen T: Apoptosis and the pathogenesis of IDDM: A question of life and death. Diabetes 47: 1537-1543, 1998

    Google Scholar 

  28. Packer MA, Murphy MP: Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Lett 345: 237-240, 1994

    Google Scholar 

  29. Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM: Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 282: 1075-1079, 2001

    Google Scholar 

  30. Barbu A, Welsh N, Saldeen J: Cytokine-induced apoptosis and necrosis are preceded by disruption of the mitochondrial membrane potential (Deltapsi(m)) in pancreatic RINm5F cells: prevention by Bcl-2. Mol Cell Endocrinol 190: 75-82, 2002

    Google Scholar 

  31. Munger K, Scheffner M, Huibregtse JM, Howley PM: Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 12: 197-217, 1992

    Google Scholar 

  32. Beer-Romero P, Glass S, Rolfe M: Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 14: 595-602, 1997

    Google Scholar 

  33. Hassapoglidou S, Diamandis EP, Sutherland DJ: Quantification of p53 protein in tumor cell lines, breast tissue extracts and serum with time-resolved immunofluorometry. Oncogene 8: 1501-1509, 1993

    Google Scholar 

  34. Shimizu S, Eguchi Y, Kamiike W, Waguri S, Uchiyama Y, Matsuda H, Tsujimoto Y: Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: Possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 12: 2045-2050, 1996

    Google Scholar 

  35. Messmer UK, Ankarcrona M, Nicotera P, Brune B: p53 expression in nitric oxide-induced apoptosis. FEBS Lett 355: 23-26, 1994

    Google Scholar 

  36. Gannon JV, Greaves R, Iggo R, Lane DP: Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J 9: 1595-1602, 1990

    Google Scholar 

  37. Taylor WR, Stark GR: Regulation of the G2/M transition by p53. Oncogene 20: 1803-1815, 2001

    Google Scholar 

  38. Malanga M, Pleschke JM, Kleczkowska HE, Althaus FR: Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 273: 11839-11843, 1998

    Google Scholar 

  39. Masutani M, Nozaki T, Wakabayashi K, Sugimura T: Role of poly(ADP-ribose) polymerase in cell-cycle checkpoint mechanisms following gamma-irradiation. Biochimie 77: 462-465, 1995

    Google Scholar 

  40. Schreiber V, Hunting D, Trucco C, Gowans B, Grunwald D, De Murcia G, De Murcia JM: A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Natl Acad Sci USA 92: 4753-4757, 1995

    Google Scholar 

  41. Smith S, Giriat I, Schmitt A, de Lange T: Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282: 1484-1487, 1998

    Google Scholar 

  42. Preston RJ: Telomeres, telomerase and chromosome stability. Radiat Res 147: 529-534, 1997

    Google Scholar 

  43. Mohr S, McCormick TS, Lapetina EG: Macrophages resistant to endogenously generated nitric oxide-mediated apoptosis are hypersensitive to exogenously added nitric oxide donors: Dichotomous apoptotic response independent of caspase 3 and reversal by the mitogen-activated protein kinase kinase (MEK) inhibitor PD 098059. Proc Natl Acad Sci USA 95: 5045-5050, 1998

    Google Scholar 

  44. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA: Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368-372, 1996

    Google Scholar 

  45. Halappanavar SS, Rhun YL, Mounir S, Martins LM, Huot J, Earnshaw WC, Shah GM: Survival and proliferation of cells expressing caspase-uncleavable Poly(ADP-ribose) polymerase in response to death-inducing DNA damage by an alkylating agent. J Biol Chem 274: 37097-37104, 1999

    Google Scholar 

  46. Rheaume E, Cohen LY, Uhlmann F, Lazure C, Alam A, Hurwitz J, Sekaly RP, Denis F: The large subunit of replication factor C is a substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-mediated apoptosis. EMBO J 16: 6346-6354, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saldeen, J., Tillmar, L., Karlsson, E. et al. Nicotinamide- and caspase-mediated inhibition of poly(ADP-ribose) polymerase are associated with p53-independent cell cycle (G2) arrest and apoptosis. Mol Cell Biochem 243, 113–122 (2003). https://doi.org/10.1023/A:1021651811345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021651811345

Navigation