Skip to main content
Log in

Cuticular Hydrocarbons of Drosophila birchii and D. serrata: Identification and Role in Mate Choice in D. serrata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The cuticular hydrocarbon compositions of two sympatric species of Australian Drosophila in the montium subgroup of the melanogaster group that use cuticular hydrocarbons in mate recognition have been characterized. Drosophila birchii has 34 components in greater than trace amounts, with a carbon number range of C20 to C33. Drosophila serrata has 21 components above trace level and a carbon number range of C24 to C31. These two species share eight hydrocarbon components, with all but two of them being monoenes. For both species, the (Z)-9-monoenes are the predominant positional isomer. The hydrocarbons of D. birchii are n-alkanes, n-alkenes (Z)-5-, (Z)-7-, (Z)-9-, and (Z)-11-), low to trace levels of homologous (Z,Z)-7,11- and (Z,Z)-9,13-dienes; and trace amounts of (Z,Z)-5,9-C25:2, a major component of D. serrata. Only one methyl branched hydrocarbon was detected (2-methyl C28), and it occurred at very low levels. The hydrocarbons of D. serrata are dominated by a homologous series of (Z,Z)-5,9-dienes, and notably, are characterized by the apparent absence of n-alkanes. Homologous series of (Z)-5-, (Z)-7-, and (Z)-9-alkenes are also present in D. serrata as well as 2-methyl alkanes. Drosophila serrata females display strong directional mate choice based on male cuticular hydrocarbons and prefer D. serrata males with higher relative abundances of the 2-methyl alkanes, but lower relative abundances of (Z,Z)-5,9-C24:2 and (Z)-9-C25:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitchison, J. 1986. The Statistical Analysis of Composition Data. Chapman and Hall, London, United Kingdom.

    Google Scholar 

  • Antony, C. and Jallon, J.-M. 1982. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect Physiol. 28:873–880.

    Google Scholar 

  • Ayala, F. J. 1965. Sibling species of the Drosophila serrata group. Evolution 19:538–545.

    Google Scholar 

  • Bartelt, R. J., Armold, M. T., Schaner, A. M., and Jackson, L. L. 1986. Comparative analysis of cuticular hydrocarbons in the Drosophila virilis species group. Comp. Biochem. Physiol. 83B:731–742.

    Google Scholar 

  • Blomquist, G. J., Toolson, E. C., and Nelson, D. R. 1985. Epicuticular hydrocarbons of Drosophila pseudoobscura (Diptera, Drosophilidae). Identification of unusual alkadienes and alkatriene positional isomers. Insect Biochem. 15:25–34.

    Google Scholar 

  • Blows, M. W. 2002. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. R. Soc. B. 269:1113–1118.

    Google Scholar 

  • Blows, M. W. and Allan, R. A. 1998. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152:826–837.

    Google Scholar 

  • Boake, C. R. B., DeAngelis, M. P., and Andreadis, D. K. 1997. Is sexual selection and species recognition a continuum? Mating behaviour of the stalk-eyed fly Drosophila heteroneura. Proc. Natl. Acad. Sci. USA 94:12442–12445.

    Google Scholar 

  • Buckley, S. H., Tregenza, T., and Butlin, R. K. 1997. Speciation and signal trait genetics. Trends Ecol. Evol. 12:299–301.

    Google Scholar 

  • Cobb, M. and Jallon, J.-M. 1990. Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group. Anim. Behav. 39:1058–1067.

    Google Scholar 

  • Coyne, J. A. and Charlesworth, B. 1997. Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia. Evolution 145:1015–1030.

    Google Scholar 

  • Coyne, J. A., Crittenden, A. P., and Mah, K. 1994. Genetics of a pheromone difference contributing to reproductive isolation in Drosophila. Science 265:1461–1464.

    Google Scholar 

  • Descoins, C., Lalannecassou, B., Malosse, C., and Milat, M. L. 1986. Analysis of the sex pheromone produced by the virgin female of Moscis-Latipes (Guenee), Noctuidae, Cataocalinae, from Guadeloupe (French Antilla). C.R. Acad. Sci. III 302:509–512.

    Google Scholar 

  • Etges, W. J. and Jackson, L. L. 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VI. Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species. J. Chem. Ecol. 27:2125–2149.

    Google Scholar 

  • Ewing, A. W. and Miyan, J. A. 1986. Sexual selection, sexual isolation and the evolution of song in the Drosophila repleta group of species. Anim. Behav. 34:421–429.

    Google Scholar 

  • Ferveur, J.-F. and Sureau, G. 1996. Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc. R. Soc. London B 263:967–973.

    Google Scholar 

  • Francis, G. W. and Veland, K. 1981. Alkylthiolation for the determination of double-bond positions in linear alkenes. J. Chromatogr. 219:379–384.

    Google Scholar 

  • Gibbs, A. G. 2002. Lipid melting and cuticular permeability: new insights into an old problem. J. Insect Physiol. 48:391–400.

    Google Scholar 

  • Harrison, A. G. 1983. Chemical Ionization Mass Spectrometry. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Higgie, M., Chenoweth, S., and Blows, M. W. 2000. Natural selection and the reinforcement of mate recognition. Science 290:519–521.

    Google Scholar 

  • Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226: in D. W. Stanley-Samuelson and D. R. Nelson (Eds.). Insect lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, Nebraska.

    Google Scholar 

  • Howard, R. W., McDaniel, C. A., and Blomquist, G. J. 1978. Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J. Chem. Ecol. 4:233–245.

    Google Scholar 

  • Howard, R. W., McDaniel, C. A., Nelson, D. R., and Blomquist, G. J. 1980. Chemical ionization mass spectrometry. Application to insect-derived cuticular alkanes. J. Chem. Ecol. 6:609–623.

    Google Scholar 

  • Jackson, L. L. and Bartelt, R. J. 1986. Cuticular hydrocarbons of Drosophila virilis: comparison by age and sex. Insect Biochem. 16:433–439.

    Google Scholar 

  • Jackson, L. L. and Blomquist, G. J. 1976. Insect waxes, pp. 201–233, in Chemistry and Biochemistry of Natural Waxes. P. E. Kolattukudy (ed). Elvesier, Amsterdam.

    Google Scholar 

  • Jackson, L. L., Arnold, M. T., and Blomquist, G. J. 1981. Surface lipids of Drosophila melanogaster: comparison of the lipids from female and male wild type and sex-linked yellow mutant. Insect Biochem. 11:87–91.

    Google Scholar 

  • Jallon, J.-M. 1984. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14:441–477.

    Google Scholar 

  • Jallon, J.-M. and David, J. R. 1987. Variations in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution 41:294–302.

    Google Scholar 

  • Krokos, F. D., Konstantopoulou, M. A., and Mazomenos, B. E. 2001. Alkadienes and alkenes, sex pheromone components of the almond seed wasp Eurytoma amygdali. J. Chem. Ecol. 27:2169–2181.

    Google Scholar 

  • Markow, T. A. and Toolson, E. C. 1990. Temperature effects on epicuticular hydrocarbons and sexual isolation in Drosophila mojavensis, In J. S. F. Barker, W. T. Starmer and R. J. MacIntyre (Eds.). Ecological and Evolutionary Genetics of Drosophila. Plenum Press, New York, pp. 315–331.

    Google Scholar 

  • Nakanishi, K. 1962. Infrared Absorption Spectroscopy-Practical. Holden-Day, San Francisco, California.

    Google Scholar 

  • Nelson, D. R. 1978. Long-chain methyl-branched hydrocarbons: occurrence, biosynthesis and function. Adv. Insect Physiol. 13:1–33.

    Google Scholar 

  • Stennett, M. D. and Etges, W. J. 1997. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J. Chem. Ecol. 23:2803–2824.

    Google Scholar 

  • Swedenborg, P. D. and Jones, R. L. 1992. (Z)-4-Tridecenal, a pheromonally active air oxidation product from a series of (Z,Z)-9,13 dienes in Macrocentrus grandii Goidanich (Hymenoptera: Braconidae). J. Chem. Ecol. 18:1913–1931.

    Google Scholar 

  • Toolson, E. C. and Kuper-Simbron, R. 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal acclimation ability. Evolution 43:468–473.

    Google Scholar 

  • Toolson, E. C., Markow, T. A., Jackson, L. L., and Howard, R. W. 1990. Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and Crow (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 83:1165–1176.

    Google Scholar 

  • Vicenti, M., Guiglielmetti, G., Cassani, G., and Tonini, C. 1987. Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal. Chem. 59:694–699.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph W. Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, R.W., Jackson, L.L., Banse, H. et al. Cuticular Hydrocarbons of Drosophila birchii and D. serrata: Identification and Role in Mate Choice in D. serrata . J Chem Ecol 29, 961–976 (2003). https://doi.org/10.1023/A:1022992002239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022992002239

Navigation