Skip to main content
Log in

Using DNA to Power Nanostructures

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

DNA hybridization has been used to power a number of DNA-based nanostructures constructed out of DNA. Here some considerations that go into DNA-based motor design are briefly reviewed. The emphasis will be on the operation of toeholds, single-stranded sections of DNA that facilitate the process of strand removal during certain points in the operation of a DNA-based motor. Reaction kinetics measurements for toehold mediated strand exchange are reported. These measurements have served as a guide for choosing toehold lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Balzani, A. Credi, F. M. Raymo, and J. F. Stoddart, “Artifical molecular machines,” Angew. Chem. Int. Ed., vol. 39,no. 19, pp. 3349-3391, 2000.

    Article  Google Scholar 

  2. R.J. Britten and D.E. Kohne, “Repeated Sequences in DNA,” Science, vol. 161,no. 3841, pp. 529-540, 1968.

    Google Scholar 

  3. J. H. Chen and N. C. Seeman, “Synthesis from DNA of a molecule with the connectivity of a cube,” Nature, vol. 350,no. 6319, pp. 631-633, 1991.

    Article  Google Scholar 

  4. X. N. Chen, B. Zehnbauer, A. Gnirke, and P.-Y. Kwok, “Fluorescence energy transfer detection as a homogeneous DNA diagnostic method,” Proc. Natl. Acad. Sci. USA, vol. 94,no. 20, pp. 10756-10761, 1991.

    Article  Google Scholar 

  5. A. K. Eggleston and S. C. Kowalczykowski, “An overview of homologous pairing and DNA strand exchange proteins,” Biochemie, vol. 73,no. 2–3, pp. 163-176, 1991.

    Article  Google Scholar 

  6. M. Eigen and P. Schuster, The Hypercycle, A Principle of Natural Self-Organization, Springer: Berlin, 1979.

    Google Scholar 

  7. E. H. Ekland, J. W. Szostak, and D. P. Bartel, “Structurally complex and highly-active RNA ligases derived from random RNA sequences,” Science, vol. 269,no. 5222, pp. 364-370, 1995.

    Google Scholar 

  8. B. Essevaz-Roulet, U. Bockelmann, and F. Heslot, “Mechanical separation of the complementary strands of DNA,” Proc. Natl. Acad. Sci., USA, vol. 94,no. 22, pp. 11935-11940, 1997.

    Article  Google Scholar 

  9. C. Green and C. Tibbetts, “Reassociation rate limited displacement of DNA strands by branch migration,” Nucl. Acids Res., vol. 9,no. 8, pp. 1905-1918, 1981.

    Google Scholar 

  10. M. J. Heller and L. E. Morrison, in Rapid Detection and Identification of Infectious Agents, D. T. Kingsbury and S. Falkow (eds.), Academic Press, New York, 1985, pp. 245-256.

    Google Scholar 

  11. K. D. James and A. D. Ellington, “The search for missing links between self-replicating nucleic-acids and the RNA world,” Origins of Life and Evolution of the Biosphere, vol. 25,no. 6, pp. 515-530, 1995.

    Article  Google Scholar 

  12. W. K. Johnston, P. J. Unrau, M. S. Lawrence, M. E. Glasner, and D. P. Bartel, “RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension,” Science, vol. 292,no. 5520, pp. 1319-1325, 2001.

    Article  Google Scholar 

  13. N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirectional molecular rotor,” Nature, vol. 401,no. 6749, pp. 152-155, 1999.

    Article  Google Scholar 

  14. T. Li and K.C. Nicolaou, “Chemical self-replication of palindromic duplex DNA,” Nature, vol. 369,no. 6477, pp. 218-221, 1994.

    Article  Google Scholar 

  15. J. J. Li and W. Tan, “A single DNA molecule nanomotor,” Nano Lett., vol. 2,no. 4, pp. 315-318, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Liphardt, B. Onoa, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Reversible unfolding of single RNA molecules by mechanical force,” Science, vol. 292,no. 5517, pp. 733-737, 2001.

    Article  Google Scholar 

  17. C. D. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, “Logical computation using algorithmic self-assembly of DNA triple-crossover molecules,” Nature, vol. 407,no. 6803, pp. 493-496, 2000.

    Article  Google Scholar 

  18. C. D. Mao, W. Q. Sun, and N. C. Seeman, “Assembly of Borromean rings from DNA,” Nature, vol. 386,no. 6621, pp. 137-138, 1997.

    Article  Google Scholar 

  19. C. D. Mao, W. Q. Sun, Z. Y. Shen, and N. C. Seeman, “A nanomechanical device based on the B-Z transition of DNA,” Nature, vol. 397,no. 6715, pp. 144-146, 1999.

    Article  Google Scholar 

  20. J. C. Mitchell and B. Yurke, “DNA Scissors,” in DNA Computing, N. Jonoska and N. C. Seeman (eds.), 7th International Workshop on DNA-Based Computers, DNA7 Tampa, FL, USA, June 10–13, 2001, Springer, 2002, pp. 263-268.

  21. L. E. Morrison, T. C. Halder, and L. M. Stols, “Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization,” Anal. Biochem., vol. 183,no. 2, pp. 231-244, 1989.

    Article  Google Scholar 

  22. L. E. Morrison and L. M. Stols, “Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution,” Biochemistry, vol. 32,no. 12, pp. 3095-3104, 1993.

    Article  Google Scholar 

  23. C.M. Niemeyer and M. Adler, “Nanomechanical Devices Based on DNA,” Angew. Chem. Int. Ed., vol. 41,no. 20, pp. 3779-3783, 2002.

    Article  Google Scholar 

  24. N. Paul and G. F. Joyce, “A self-replicating ligase ribozyme,” Proc. Natl. Acad. Sci. USA, vol. 99,no. 20, pp. 12733-12740, 2002.

    Article  Google Scholar 

  25. C. M. Radding, K. L. Beattie, W. K. Holloman, and R. C. Wiegand, “Uptake of homologous single-stranded fragments by superhelical DNA: IV branch migration,” J. Mol. Biol., vol. 116,no. 4, pp. 825-839, 1977.

    Article  Google Scholar 

  26. M. Rief, H. Clausen-Schaumann, and H.E. Gaub, “Sequence-dependent mechanics of single DNA molecules,” Nat. Struct. Biol., vol. 6,no. 4, pp. 346-349, 1999.

    Article  Google Scholar 

  27. J. SantaLucia, Jr., “A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics,” Proc. Natl. Acad. Sci. USA, vol. 95,no. 4, pp. 1460-1465, 1998.

    Article  Google Scholar 

  28. D. Sievers and G. von Kiedrowski, “Self replication of complementary nucleotide-based oligomers,” Nature, vol. 369,no. 6477, pp. 221-224, 1994.

    Article  Google Scholar 

  29. F. C. Simmel and B. Yurke, “Using DNA to construct and power a nanoactuator,” Phys. Rev. E, vol. 63,no. 4, art. no. 041913, 2001.

  30. F. C. Simmel and B. Yurke, “A DNA-based molecular device switchable between three distinct mechanical states,” Appl. Phys. Lett., vol. 80,no. 5, pp. 883-885, 2002.

    Article  Google Scholar 

  31. S. B. Smith, Y. J. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science, vol. 271,no. 5250, pp. 795-799, 1996.

    Google Scholar 

  32. B. Tinland, A. Pluen, J. Sturm, and G. Weill, “Persistence length of single-stranded DNA,” Macromolecules, vol. 30,no. 19, pp. 5763-5765, 1997.

    Article  Google Scholar 

  33. A.J. Turberfield, B. Yurke, and A.P. Mills, Jr., “DNA hybridization catalysts and molecular tweezers,” in DNA Based Computers V, E. Winfree and D.K. Gifford (eds.), DLMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, 2000, pp. 171-182.

  34. J.G. Wetmur and N. Davidson, “Kinetics of Renaturation of DNA,” J. Mol. Biol., vol. 31,no. 3, pp. 349-370, 1968.

    Article  Google Scholar 

  35. E. Winfree, F. R. Lui, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature, vol. 394,no. 6693, pp. 539-544, 1998.

    Article  Google Scholar 

  36. H. Yan, X. P. Zhang, Z. Y. Shen, and N. C. Seeman, “A robust DNA mechanical device controlled by hybridization topology,” Nature, vol. 415,no. 6867, pp. 62-65, 2002.

    Article  Google Scholar 

  37. B. Yurke, A. J. Turberfield, A. P. Mills, Jr., F. C. Simmel, and J. L. Neumann, “A DNA-fuelled molecular machine made of DNA,” Nature, vol. 406,no. 6796, pp. 605-608, 2000.

    Article  Google Scholar 

  38. Y. W. Zhang and N. C. Seeman, “Construction of a DNA-truncated Octahedron,” J. Am. Chem. Soc., vol. 116,no. 5, pp. 1661-1669, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurke, B., Mills, A.P. Using DNA to Power Nanostructures. Genet Program Evolvable Mach 4, 111–122 (2003). https://doi.org/10.1023/A:1023928811651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023928811651

Navigation