Skip to main content
Log in

Cortical area and species differences in dendritic spine morphology

  • Published:
Journal of Neurocytology

Abstract

Dendritic spines receive most excitatory inputs in the neocortex and are morphologically very diverse. Recent evidence has demonstrated linear relationships between the size and length of dendritic spines and important features of its synaptic junction and time constants for calcium compartmentalisation. Therefore, the morphologies of dendritic spines can be directly interpreted functionally. We sought to explore whether there were potential differences in spine morphologies between areas and species that could reflect potential functional differences. For this purpose, we reconstructed and measured thousands of dendritic spines from basal dendrites of layer III pyramidal neurons from mouse temporal and occipital cortex and from human temporal cortex. We find systematic differences in spine densities, spine head size and spine neck length among areas and species. Human spines are systematically larger and longer and exist at higher densities than those in mouse cortex. Also, mouse temporal spines are larger than mouse occipital spines. We do not encounter any correlations between the size of the spine head and its neck length. Our data suggests that the average synaptic input is modulated according to cortical area and differs among species. We discuss the implications of these findings for common algorithms of cortical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonhoeffer, T. &; Yuste, R. (2002) Spine motility. Phenomenology, mechanisms, and function. Neuron 35, 1019–1027.

    PubMed  Google Scholar 

  • Colonnier, M. (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Research 9, 268–287.

    PubMed  Google Scholar 

  • Denk, W., Delaney, K. R., Gelperin, A., Kleinfeld, D., Strowbridge, B. W., Tank, D. W. &; Yuste, R. (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. Journal of Neuroscience Methods 54, 151–162.

    PubMed  Google Scholar 

  • Dierssen, M., Benavides-Piccione, R., MartÍnez-CuÉ, C., Estivill, X., FlÓrez, J., Elston, G. &; deFelipe, J. (2003) Alterations of neocortical pyramidal cell phenotype in the Ts65Dn mouse model of down syndrome: Effects of enrichment. Cerebral Cortex. submitted

  • Douglas, R. J., Martin, K. A. C. &; Whittteridge, D. (1989) Acanonical microcircuit for neocortex. Neural Computation 1, 480–488.

    Google Scholar 

  • Elston, G. N., Pow, D. V. &; Calford, M. B. (1997) Neuronal composition and morphology in layer IV of two vibrissal barrel subfields of rat cortex. Cerebral Cortex 7, 422–431.

    PubMed  Google Scholar 

  • Elston, G. N., Benavides-Piccione, R., &; deFelipe, J. (2001) The pyramidal cell in cognition: A comparative study in human and monkey. Journal of Neuroscience 21, RC163.

  • Elston, G. N. &; deFelipe, J. (2002) Spine distribution in cortical pyramidal cells:Acommon organizational principle across species. Progress in Brain Research 136, 109–133.

    PubMed  Google Scholar 

  • Elston, G. N. (2002) Cortical heterogeneity: Implications for visual processing and polysensory integration. Journal of Neurocytology 31, 317–335.

    PubMed  Google Scholar 

  • Feldman, M. L. (1984) Morphology of the neocortical pyramidal neuron. In Cerebral Cortex, Vol. 1, Cellular Components of the Cerebral Cortex (edited by Peters, A. &; Jones, E. G.) pp. 123–200. New York: Plenum Press.

    Google Scholar 

  • Fischer, M., Kaech, S., Knutti, D. &; Matus, A. (1998) Rapid actin-based plasticity in dendritic spine. Neuron 20, 847–854.

    PubMed  Google Scholar 

  • Franklin, K. B. J. &; Paxinos, G. (1997) Themouse brain in stereotaxic coordinates. San Diego: Academic Press.

    Google Scholar 

  • Gray, E. G. (1959a) Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscopic study. Journal of Anatomy 83, 420–433.

    Google Scholar 

  • Gray, E. G. (1959b) Electron microscopy of synaptic contacts on dendritic spines of the cerebral cortex. Nature 183, 1592–1594.

    PubMed  Google Scholar 

  • Harris, K. M. &; Stevens, J. K. (1989) Dendritic spines of CA1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics. Journal Neuroscience 9, 2982–2997.

    Google Scholar 

  • Jones, E. G. &; Powell, T. P. S. (1969) Morphological variation in the dendritic spines of the neocortex. Journal of Cell Science 5, 509–529.

    PubMed  Google Scholar 

  • Lorente de NÓ, R. (1922) La corteza cerebral del ratón. Trabajos Laboratorio Investigaciones Biológicas 20, 41–78.

    Google Scholar 

  • Lorente de NÓ, R. (1933) Studies on the structure of the cerebral cortex. Journal of Psychology und Neurology 45, 381–438.

    Google Scholar 

  • Majewska, A., Brown, E., Ross, J. &; Yuste, R. (2000a) Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. Journal of Neuroscience 20, 1722–1734.

    PubMed  Google Scholar 

  • Majewska, A., Tashiro, A. &; Yuste, R. (2000b) Regulation of spine calcium compartmentalization by rapid spine motility. Journal of Neuroscience 20, 8262–8268.

    PubMed  Google Scholar 

  • MarÍn-Padilla, M. (1972) Structural abnormalities of the cerebral cortex in human chromosomal aberrations. Brain Research 44, 625–29.

    PubMed  Google Scholar 

  • Matus, A., Ackerman, N M., Pehling, G., Byers H. R. &; Fujiwara, K. (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proceedings of the National Academy of Sciences USA 79, 7590–7594.

    Google Scholar 

  • Nusser, Z., Lujan, R., Laube, G., Roberts, J. D., Molnar, E. &; Somogyi, P. (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559.

    PubMed  Google Scholar 

  • Purpura, D. (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186, 1126–1128.

    PubMed  Google Scholar 

  • RamÓn Y Cajal, S. (1888) Estructura de los centros nerviosos de las aves. Revista Trimestral de Histología Normal y Patológica 1, 1–10.

    Google Scholar 

  • RamÓn Y Cajal, S. (1899) La Textura del Sistema Nerviosa del Hombre y los Vertebrados. (Primera Edicion). Madrid: Moya.

    Google Scholar 

  • Ruiz-Marcos, A. &; Valverde, F. (1969) The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark raised mice. Experimental Brain Research 8, 284–294.

    Google Scholar 

  • Sabatini, B. L., Oertner, T. G. &; Svoboda, K. (2002) The life cycle of Ca(2+) ions in dendritic spines. Neuron 33, 439–452.

    PubMed  Google Scholar 

  • Schikorski, T. &; Stevens, C. (1999) Quantitative finestructural analysis of olfactory cortical synapses. Proceedings of the National Academy of Sciences USA 96, 4107–4112.

    Google Scholar 

  • Schikorski, T. &; Stevens, C. F. (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nature Neuroscience 4, 391–395.

    PubMed  Google Scholar 

  • Shepherd, G. (1996) The dendritic spine: A multifunctional integrative unit. Journal of Neurophysiology 75, 2197–210.

    PubMed  Google Scholar 

  • Svoboda, K., Tank, D. W., &; Denk, W. (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719.

    PubMed  Google Scholar 

  • Swindale, N. V. (1981) Dendritic spines only connect. Trends in Neurosciences 4, 240–241.

    Google Scholar 

  • Yuste, R. &; Denk, W. (1995) Dendritic spines as basic units of synaptic integration. Nature 375, 682–684.

    PubMed  Google Scholar 

  • Yuste, R. &; Bonhoeffer, T. (2001) Morphological changes in dendritic spines associated with longterm synaptic plasticity. Annual Review of Neuroscience 24, 1071–1089.

    PubMed  Google Scholar 

  • Yuste, R. &; Majewska, A. (2001) On the function of dendritic spines. The Neuroscientist 7, 387–395.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benavides-Piccione, R., Ballesteros-Yáñez, I., DeFelipe, J. et al. Cortical area and species differences in dendritic spine morphology. J Neurocytol 31, 337–346 (2002). https://doi.org/10.1023/A:1024134312173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024134312173

Keywords

Navigation