Skip to main content
Log in

Lysosomal heterogeneity between and within cells with respect to resistance against oxidative stress

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

The prevailing opinion on lysosomal endurance is that, as long as the cells are still alive, these organelles are generally quite stable and, thus, do not induce cell damage by leaking their numerous powerful hydrolytic enzymes to the cytosol. We suggest that this opinion is basically wrong and consider that many lysosomes are quite vulnerable, especially to oxidative stress. Moreover, we suggest that cellular degeneration, including apoptosis as well as necrosis, follows upon lysosomal disruption. We have found differing stability of lysosomal membranes to oxidative stress, not only among different cell types, but also between cells of the same type and between lysosomes of individual cells. We suggest that cellular resistance to oxidative stress is mainly a function of three parameters: (i) the capacity to degrade hydrogen peroxide before it reaches, and may diffuse into, the acidic vacuolar compartment; (ii) the resistance to reactive oxygen species of lysosomal membranes; and (iii) the intralysosomal amounts of redox-active, low molecular weight iron. Iron-catalysed intralysosomal reactions, if pronounced enough, result in peroxidation and destabilization of the lysosomal membrane. Owing to differences in the cellular synthesis of hydrogen peroxide-degrading enzymes, degree of autophagocytotic degradation of iron-containing metalloproteins, lysosomal localization within the cytoplasm and intralysosomal iron chelation, the above three parameters may vary between both different and similar cells and between lysosomes of individual cells as well, explaining their observed variability with respect to resistance against oxidative stress

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, A.C. (1971) Lysosomes and the toxicity of particulate pollutants. Arch. Intern. Med.128, 131-9.

    Article  PubMed  CAS  Google Scholar 

  • Allison, A.C., Harington, J.S. & Birbeck, M. (1966) An examination of the cytotoxic effects of silica on macrophages. J. Exp. Med.124, 141-54.

    Article  PubMed  CAS  Google Scholar 

  • Brunk, U.T. & Ericsson, J.L.E. (1972) Cytochemical evidence for the leakage of acid phosphatase through ultrastructurally intact lysosomal membranes. Histochem. J.4, 479-91.

    Article  PubMed  CAS  Google Scholar 

  • Brunk, U.T., Jones, C.B. & Sohal, R.S. (1992) A novel hypothesis of lipofuscinogenesis and cellular aging bases on interactions between oxidative stress and autophagocytosis. Mutat. Res.275, 395-403.

    PubMed  CAS  Google Scholar 

  • Brunk, U.T., Zhang, H., Dalen, H. & Öllinger, K. (1995a) Exposure of cells to nonlethal concentrations of hydrogen peroxide induces degeneration-repair mechanisms involving lysosomal destabilization. Free Radical Biol. Med.19, 813-22.

    Article  CAS  Google Scholar 

  • Brunk, U.T., Zhang, H., Roberg, K. & Öllinger, K. (1995b) Lethal hydrogen peroxide toxicity involves lysosomal iron-catalyzed reactions with membrane damage. Redox Report1, 267-77.

    CAS  Google Scholar 

  • Brunk, U.T., Dalen, H., Roberg, K. & Hellquist, H.B. (1997) Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radical Biol. Med.23, (in press).

  • Crichton, R.R. & Ward, R.J. (1992) 1. Structure and molecular biology of iron binding proteins and the regulation of ‘free’ iron pools. In Iron and Human Disease (edited by Lauffer, R.B.), pp. 23-75. Boca Raton, Ann Arbor, London and Tokyo: CRC Press.

    Google Scholar 

  • De Duve, C. (1959) Lysosomes, a new group of cytoplasmic particles. In Subcellular Particles (edited by Hayashi, T.), pp. 128-59. New York: The Ronald Press Co.

    Google Scholar 

  • Ericsson, J.L.E. (1969) Mechanisms of cellular autophagy. In Lysosomes in Biology and Pathology (edited by Dingle, J.T. & Fell, H.B.), Vol. 2, pp. 345-87. Amsterdam: The North-Holland Publishing Company.

    Google Scholar 

  • Garner, B., Li, W., Roberg, K. & Brunk, U.T. (1997) On the cytoprotective role of ferritin in macrophages and its ability to enhance lysosomal stability. Free Radical Res. (in press).

  • Genfa, Z., Dasgupta, P.K., Edgemond, W.S. & Marx, J.N. (1991) Determination of hydrogen peroxide by photoinduced fluorogenic reactions. Anal. Chim. Acta243, 207-16.

    Article  Google Scholar 

  • Guilbault, G.G., Brignac, P.J. & Juneau, M. (1968) New substrates for the fluorometric determination of oxidative enzymes. Anal. Chem.40, 1256-63.

    Article  PubMed  CAS  Google Scholar 

  • Hellquist, H.B., Svensson, I. & Brunk, U.T. (1997) Oxidant-induced apoptosis: a consequence of lethal lysosomal leak? Redox Report3, 65-70.

    CAS  Google Scholar 

  • Holzman, E. (1989) Autophagy and related phenomena. In Lysosomes pp. 243-318. New York and London: Plenum Press.

    Google Scholar 

  • Ishikawa, S., Nemoto, R., Kanoh, S., Kobayashi, K. & Ishisaka, S. (1984) Photodynamic inactivation of bladder cancer cells (MGH-U1) sensitized with acridine orange and irradiated by argon laser. Tohoku J. Exp. Med.144, 265-71.

    Article  PubMed  CAS  Google Scholar 

  • Kane, A.B., Stanton, R.P., Raymond, E.G., Dobson, M.E., Knafelc, M. E. & Farber, J.L. (1980) Dissociation of intracellular lysosomal rupture from cell death caused by silica. J. Cell. Biol.87, 643-51.

    Article  PubMed  CAS  Google Scholar 

  • Mortimore, G.E., Miotto, G., Venerando, R. & Kadowaki, M. (1996) Autophagy. In Subcellular Biochemistry, Vol. 27, Biology of the Lysosome (edited by Lloyd, J.B. & Mason, R.W.), pp. 93-135. London and New York: Plenum Press.

    Google Scholar 

  • Olejnicka, B.T. & Brunk, U.T. (1997) Starvation-induced autophagocytosis paradoxically decreases the susceptibility to oxidative stress to the very oxidative-stress-sensitive NIT insulinoma cells. Diabetologia (submitted).

  • Olejnicka, B.T., Öllinger, K. & Brunk, U.T. (1997) A short exposure to a high-glucose milieu stabilizes the acidic vacuolar apparatus of insulinoma cells in culture to ensuing oxidative stress. APMIS (in press).

  • Öllinger, K. & Brunk, U.T. (1995) Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free Radical Biol. Med.19, 813-22.

    Article  Google Scholar 

  • Sakaida, I., Kyle, M.E. & Farber, J.L. (1990) Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress. Mol. Pharmacol.37, 435-42.

    PubMed  CAS  Google Scholar 

  • Starke, P.E. & Farber, J.L. (1985) Ferric iron and superoxide ions are required for the killing of cultured hepatocytes by hydrogen peroxide. J. Biol. Chem.260, 10099-104

    PubMed  CAS  Google Scholar 

  • Starke, P.E., Gilbertson, J.D. & Farber, J.L. (1985) Lysosomal origin of the ferric iron required for cell killing by hydrogen peroxide. Biochem. Biophys. Res. Commun.133, 371-9.

    Article  PubMed  CAS  Google Scholar 

  • Trump, B.F. & Arstila, A.U. (1975) Cell membranes and disease processes. In Pathobiology of Cell Membranes (edited by Trump, B.F. & Arstila, A.U.), Vol. 1, pp. 1-103. New York: Academic Press.

    Google Scholar 

  • Wildenthal, K., Decker, R.S., Poole, R., Griffin, E.E. & Dingle, J.T. (1978) Sequential lysosomal alterations during cardiac ischemia. I. Biochemical and immunohistochemical changes. Lab. Invest.38, 656-61.

    PubMed  CAS  Google Scholar 

  • Wilson, P.D., Firestone, R.A. & Lenard, J. (1987) The role of lysosomal enzymes in killing of mammalian cells by the lysosomotropic detergent N-dodecylimidazole. J. Cell. Biol.104, 1223-9.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn, C. (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett.82/83, 969-74.

    Article  CAS  Google Scholar 

  • Zdolsek, J.M. (1993) Acridine orange-mediated photodamage to cultured cells. APMIS101, 127-32.

    Article  PubMed  CAS  Google Scholar 

  • Zdolsek, J.M. & Svensson, I. (1993) Effect of reactive oxygen species on lysosomal membrane integrity. Virchows Arch. B.64, 401-6.

    Article  PubMed  CAS  Google Scholar 

  • Zdolsek, J.M., Olsson, M.G. & Brunk, U.T. (1990) Photooxidative damage to lysosomes of cultured macrophages by acridine orange. Photochem. Photobiol.51, 67-76.

    Article  PubMed  CAS  Google Scholar 

  • Zdolsek, J.M., Zhang, H., Roberg, K. & Brunk, U.T. (1993a) H2O2-mediated damage to lysosomal membranes of J-774 cells. Free Radical Res. Commun.18, 71-85.

    Article  CAS  Google Scholar 

  • Zdolsek, J.M., Roberg, K. & Brunk, U.T. (1993b) Visualization of iron in cultured macrophages: a cytochemical light and electron microscopic study using autometallography. Free Radical Biol. Med.15, 1-11.

    Article  CAS  Google Scholar 

  • Zhang, H., Öllinger, K. & Brunk, U.T. (1995) Insulinoma cells in culture show pronounced sensitivity to alloxan-induced oxidative stress. Diabetologia38, 635-41.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Olejnicka, B., Öllinger, K. & Brunk, U.T. (1996) Starvation-induced autophagocytosis enhances the susceptibility of insulinoma cells to oxidative stress. Redox Report2, 235-47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, E., Ghassemifar, R. & Brunk, U.T. Lysosomal heterogeneity between and within cells with respect to resistance against oxidative stress. J Mol Hist 29, 857–865 (1997). https://doi.org/10.1023/A:1026441907803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026441907803

Keywords

Navigation