Skip to main content
Log in

Processing, Distribution, and Function of VGF, a Neuronal and Endocrine Peptide Precursor

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The vgf gene encodes a neuropeptide precursor with a restricted pattern of expression that is limited to a subset of neurons in the central and peripheral nervous systems and to specific populations of endocrine cells in the adenohypophysis, adrenal medulla, gastrointestinal tract, and pancreas. In responsive neurons, vgf transcription is upregulated by neurotrophins, the basis for the original identification of VGF as nerve growth factor- (NGF) inducible in PC12 cells (A. Levi, J. D. Eldridge, and B. M. Paterson, Science 229:393–395, 1985).

2. In this review, we shall summarize data concerning the transcriptional regulation of vgf in vitro, the structural organization of the vgf promoter as well as the transcription factors which regulate its activity.

3. On the basis of in situ hybridization and immunohistochemical studies, the in vivo tissue-specific expression of VGF during differentiation and in the adult will be summarized.

4. Parallel biochemical data will be reviewed, addressing the proteolytical processing of the pro-VGF precursor within the secretory compartment of neuroendocrine cells.

5. Finally, analysis of the phenotype of VGF knockout mice will be discussed, implying a nonredundant role of VGF products in the regulation of energy storage and expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Ahima, R. S., Saper, C. B., Flier, J. S., and Elmquist, J. K. (2000). Leptin regulation of neuroendocrine systems. Front. Neuroendocrinol. 21:263–307.

    Google Scholar 

  • Altshuler, D., and Hirschhorn, J. N. (1999). Upsetting the balance: VGF and the regulation of body weight. Neuron 23:415–417.

    Google Scholar 

  • Barsh, G. S., Farooqi, I. S., and O'Rahilly, S. (2000). Genetics of body-weight regulation. Nature 404:644–651.

    Google Scholar 

  • Baybis, M., and Salton, S. R. (1992). Nerve growth factor rapidly regulates VGF gene transcription through cycloheximide sensitive and insensitive pathways. FEBS Lett. 308:202–206.

    Google Scholar 

  • Benson, D. L., and Salton, S. R. (1996). Expression and polarization of VGF in developing hippocampal neurons. Brain Res. Dev. Brain Res. 96:219–228.

    Google Scholar 

  • Bonni, A., Ginty, D. D., Dudek, H., and Greenberg, M. E. (1995). Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol. Cell. Neurosci. 6:168–183.

    Google Scholar 

  • Canu, N., Possenti, R., Ricco, A. S., Rocchi, M., and Levi, A. (1997a). Cloning, structural organization analysis, and chromosomal assignment of the human gene for the neurosecretory protein VGF. Genomics 45:443–446.

    Google Scholar 

  • Canu, N., Possenti, R., Rinaldi, A. M., Trani, E., and Levi, A. (1997b). Molecular cloning and characterization of the human VGF promoter region. J. Neurochem. 68:1390–1399.

    Google Scholar 

  • Cho, K. O., Skarnes, W. C., Minsk, B., Palmieri, S., Jackson-Grusby, L., and Wagner, J. A. (1989). Nerve growth factor regulates gene expression by several distinct mechanisms. Mol. Cell. Biol. 9:135–143.

    Google Scholar 

  • D'Arcangelo, G., Habas, R., Wang, S., Halegoua, S., and Salton, S. R. (1996). Activation of codependent transcription factors is required for transcriptional induction of the vgf gene by nerve growth factor and Ras. Mol. Cell. Biol. 16:4621–4631.

    Google Scholar 

  • Davis, B. M., Albers, K. M., Seroogy, K. B., and Katz, D. M. (1994). Overexpression of nerve growth factor in transgenic mice induces novel sympathetic projections to primary sensory neurons. J. Comp. Neurol. 349:464–474.

    Google Scholar 

  • Eagleson, K. L., Fairfull, L. D., Salton, S. R., and Levitt, P. (2001). Regional differences in neurotrophin availability regulate selective expression of VGF in the developing limbic cortex. J. Neurosci. 21:9315–9324.

    Google Scholar 

  • Ferri, G. L., Levi, A., and Possenti, R. (1992). A novel neuroendocrine gene product: Selective VGF8a gene expression and immuno-localisation of the VGF protein in endocrine and neuronal populations. Brain Res. Mol. Brain Res. 13:139–143.

    Google Scholar 

  • Ferri, G. L., Albers, K. M., and Possenti, R. (1998). Changes in the neurotrophin-inducible protein “VGF” in mice hyperexpressing NGF. Soc. Neurosci. Abst. 24:630.

    Google Scholar 

  • Ferri, G. L., Gaudio, R. M., Cossu, M., Rinaldi, A. M., Polak, J. M., Berger, P., and Possenti, R. (1995). The “VGF” protein in rat adenohypophysis: Sex differences and changes during the estrous cycle and after gonadectomy. Endocrinology 136:2244–2251.

    Google Scholar 

  • Greene, L. A., and Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 73:2424–2428.

    Google Scholar 

  • Hahm, S., Fekete, C., Mizuno, T. M., Windsor, J., Yan, H., Boozer, C. N., Lee, C., Elmquist, J. K., Lechan, R. M., Mobbs, C. V., and Salton, S. R. (2002). VGF is required for obesity induced by diet, gold thioglucose treatment and agouti, and is differentially regulated in POMC-and NPY-containing arcuate neurons in response to fasting. J. Neurosci. 22:6929–6938.

    Google Scholar 

  • Hahm, S., Mizuno, T. M., Wu, T. J., Wisor, J. P., Priest, C. A., Kozak, C. A., Boozer, C. N., Peng, B., McEvoy, R. C., Good, P., Kelley, K. A., Takahashi, J. S., Pintar, J. E., Roberts, J. L., Mobbs, C. V., and Salton, S. R. (1999). Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 23:537–548.

    Google Scholar 

  • Harper, M. E., and Himms-Hagen, J. (2001). Mitochondrial efficiency: Lessons learned from transgenic mice. Biochim. Biophys. Acta 1504:159–172.

    Google Scholar 

  • Hawley, R. J., Scheibe, R. J., and Wagner, J. A. (1992). NGF induces the expression of the VGF gene through a cAMP response element. J. Neurosci. 12:2573–2581.

    Google Scholar 

  • Hevroni, D., Rattner, A., Bundman, M., Lederfein, D., Gabarah, A., Mangelus, M., Silverman, M. A., Kedar, H., Naor, C., Kornuc, M., Hanoch, T., Seger, R., Theill, L. E., Nedivi, E., Richter-Levin, G., and Citri, Y. (1998). Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J. Mol. Neurosci. 10:75–98.

    Google Scholar 

  • Kanemasa, K., Okamura, H., Kodama, T., and Ibata, Y. (1995a). Induction of VGF mRNA in neurons of the rat nucleus tractus solitarius and the dorsal motor nucleus of vagus in duodenal ulceration by cysteamine. Brain Res. Mol. Brain Res. 32:55–62.

    Google Scholar 

  • Kanemasa, K., Okamura, H., Kodama, T., Kashima, K., and Ibata, Y. (1995b). Time course of the induction of VGF mRNA in the dorsal vagal complex in rats with cysteamine-induced peptic ulcers. Brain Res. Mol. Brain Res. 34:309–314.

    Google Scholar 

  • Kaplan, D. R., and Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10:381–391.

    Google Scholar 

  • Laslop, A., Mahata, S. K., Wolkersdorfer, M., Mahata, M., Srivastava, M., Seidah, N. G., Fischer-Colbrie, R., and Winkler, H. (1994). Large dense-core vesicles in rat adrenal after reserpine: Levels of mRNAs of soluble and membrane-bound constituents in chromaffin and ganglion cells indicate a biosynthesis of vesicles with higher secretory quanta. J. Neurochem. 62:2448–2456.

    Google Scholar 

  • Levi, A., Eldridge, J. D., and Paterson, B. M. (1985). Molecular cloning of a gene sequence regulated by nerve growth factor. Science 229:393–395.

    Google Scholar 

  • Lewin, G. R., and Barde, Y.-A. (1996). Physiology of the Neurotrophins. Ann. Rev. Neurosci. 19:289–317.

    Google Scholar 

  • Li, L., Suzuki, T., Mori, N., and Greengard, P. (1993). Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl. Acad. Sci. U.S.A. 90:1460–1464.

    Google Scholar 

  • Liu, J. W., Andrews, P. C., Mershon, J. L., Yan, C., Allen, D. L., and Ben-Jonathan N. (1994). Peptide V: A VGF-derived neuropeptide purified from bovine posterior pituitary. Endocrinology 135:2742–2748.

    Google Scholar 

  • Lombardo, A., Rabacchi, S. A., Cremisi, F., Pizzorusso, T., Cenni, M. C., Possenti R., Barsacchi G., and Maffei L. (1995). A developmentally regulated nerve growth factor-induced gene, VGF, is expressed in geniculocortical afferents during synaptogenesis. Neuroscience 65:997–1008.

    Google Scholar 

  • Luc, P. V., and Wagner, J. A. (1997). Regulation of the neural-specific gene VGF in PC12 cells. Identification of transcription factors interacting with NGF-responsive elements. J. Mol. Neurosci. 8:223–241.

    Google Scholar 

  • Mahata, M., Hortnagl, H., Mahata, S. K., Fischer-Colbrie, R., and Winkler, H. (1993a). Messenger RNA levels of chromogranin B, secretogranin II, and VGF in rat brain after AF64A-induced septohippocampal cholinergic lesions. J. Neurochem. 61:1648–1656.

    Google Scholar 

  • Mahata, S. K., Mahata, M., Fischer-Colbrie, R., and Winkler, H. (1993b). In situ hybridization: mRNA levels of secretogranin II, VGF and peptidylglycine alpha-amidating monooxygenase in brain of salt-loaded rats. Histochemistry 99:287–293.

    Google Scholar 

  • Mahata, S. K., Mahata, M., Hortnag, H., Fischer-Colbrie, R., Steiner, H. J., Dietze, O., and Winkler, H. (1993c). Concomitant changes of messenger ribonucleic acid levels of secretogranin II, VGF, vasopressin and oxytocin in the paraventricular nucleus of rats after adrenalectomy and during lactation. J. Neuroendocrinol. 5:323–330.

    Google Scholar 

  • Mandolesi, G., Gargano, S., Pennuto, M., Illi, B., Molfetta, R., Soucek, L., Mosca, L., Levi, A., Jucker, R., and Nasi, S. (2002). NGF-dependent and tissue-specific transcription of vgf is regulated by a CREB-p300 and bHLH factor interaction. FEBS Lett. 510:50–56.

    Google Scholar 

  • Miller, F. D., and Kaplan, D. R. (2002). Neurobiology. TRK makes the retrograde. Science 295:1471–1473.

    Google Scholar 

  • Patapoutian, A., and Reichardt, L. F. (2001). Trk receptors: Mediators of neurotrophin action. Curr. Opin. Neurobiol. 11:272–280.

    Google Scholar 

  • Piccioli, P., Di Luzio, A., Amann, R., Schuligoi, R., Surani, M. A., Donnerer, J., and Cattaneo, A. (1995). Neuroantibodies: Ectopic expression of a recombinant anti-substance P antibody in the central nervous system of transgenic mice. Neuron 15:373–384.

    Google Scholar 

  • Possenti, R., Di Rocco, G., Nasi, S., and Levi, A. (1992). Regulatory elements in the promoter region of vgf, a nerve growth factor-inducible gene. Proc. Natl. Acad. Sci. U.S.A. 89:3815–3819.

    Google Scholar 

  • Possenti, R., Eldridge, J. D., Paterson, B. M., Grasso, A., and Levi, A. (1989). A protein induced by NGF in PC12 cells is stored in secretory vesicles and released through the regulated pathway. EMBO J. 8:2217–2223.

    Google Scholar 

  • Possenti, R., Rinaldi, A. M., Ferri, G. L., Borboni, P., Trani, E., and Levi, A. (1999). Expression, processing, and secretion of the neuroendocrine VGF peptides by INS-1 cells. Endocrinology 140:3727–3735.

    Google Scholar 

  • Puigserver, P., Adelmant, G., Wu, Z., Fan, M., Xu, J., O'Malley, B., and Spiegelman, B. M. (1999). Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286:1368–1371.

    Google Scholar 

  • Salton, S. R. (1991). Nucleotide sequence and regulatory studies of VGF, a nervous system-specific mRNA that is rapidly and relatively selectively induced by nerve growth factor. J. Neurochem. 57:991–996.

    Google Scholar 

  • Salton, S. R., Fischberg, D. J., and Dong, K. W. (1991). Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells. Mol. Cell. Biol. 11:2335–2349.

    Google Scholar 

  • Salton, S. R., Ferri, G. L., Hahm, S., Snyder, S. E., Wilson, A. J., Possenti, R., and Levi, A. (2000). VGF: A novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance. Front. Neuroendocrinol. 21:199–219.

    Google Scholar 

  • Schwartz, M. W., Woods, S. C., Porte, D., Jr., Seeley, R. J., and Baskin, D. G. (2000). Central nervous system control of food intake. Nature 404:661–671.

    Google Scholar 

  • Seidah, N. G., and Chretien, M. (1999). Proprotein and prohormone convertases: A family of subtilases generating diverse bioactive polypeptides. Brain Res. 848:45–62.

    Google Scholar 

  • Snyder, S. E., and Salton, S. R. (1998). Expression of VGF mRNA in the adult rat central nervous system. J. Comp. Neurol. 394:91–105.

    Google Scholar 

  • Snyder, S. E., Pintar, J. E., and Salton, S. R. (1998a). Developmental expression of VGF mRNA in the prenatal and postnatal rat. J. Comp. Neurol. 394:64–90.

    Google Scholar 

  • Snyder, S. E., Cheng, H. W., Murray, K. D., Isackson, P. J., McNeill, T. H., and Salton, S. R. (1998b). The messenger RNA encoding VGF, a neuronal peptide precursor, is rapidly regulated in the rat central nervous system by neuronal activity, seizure and lesion. Neuroscience 82:7–19.

    Google Scholar 

  • Stark, M., Danielsson, O., Griffiths, W. J., Jornvall, H., and Johansson, J. (2001). Peptide repertoire of human cerebrospinal fluid: Novel proteolytic fragments of neuroendocrine proteins. J. Chromatogr. B Biomed. Sci. Appl. 754:357–367.

    Google Scholar 

  • Steiner, D. F. (1998). The proprotein convertases.Curr. Opin. Chem. Biol. 2:31–39.

    Google Scholar 

  • Trani, E., Ciotti, T., Rinaldi, A. M., Canu, N., Ferri, G. L., Levi, A., and Possenti, R. (1995). Tissue-specific processing of the neuroendocrine protein VGF. J. Neurochem. 65:2441–2449.

    Google Scholar 

  • Tran, i E., Giorgi, A., Canu, N., Amadoro, G., Rinaldi, A. M., Halban, P. A., Ferri, G. L., Possenti, R., Schinina, M. E., and Levi, A. (2002). Isolation and characterization of VGF peptides in rat brain. Role of PC1/3 and PC2 in the maturation of VGF precursor. J. Neurochem. 81:565–574.

    Google Scholar 

  • Tschop, M., Smiley, D. L., and Heiman, M. L. (2000). Ghrelin induces adiposity in rodents. Nature 407:908–913.

    Google Scholar 

  • van den Pol, A. N., Decavel, C., Levi, A., and Paterson, B. (1989). Hypothalamic expression of a novel gene product, VGF: Immunocytochemical analysis. J. Neurosci. 9:4122–4137.

    Google Scholar 

  • van den Pol, A. N., Bina, K., Decavel, C., and Ghosh, P. (1994). VGF expression in the brain. J. Comp. Neurol. 347:455–469.

    Google Scholar 

  • Vaudry, D., Stork, P. J., Lazarovici, P., and Eiden, L. E. (2002). Signaling pathways for PC12 cell differentiation: Making the right connections. Science 296:1648–1649.

    Google Scholar 

  • Wren, A. M., Small, C. J., Abbott, C. R., Jethwa, P. H., Kennedy, A. R., Murphy, K. G., Stanley, S. A., Zollner, A. N., Ghatei, M. A., and Bloom, S. R. (2002). Hypothalamic actions of neuromedin U. Endocrinology 143:4227–4234.

    Google Scholar 

  • Wren, A. M., Small, C. J., Ward, H. L., Murphy, K. G., Dakin, C. L., Taheri, S., Kennedy, A. R., Roberts, G. H., Morgan, D. G., Ghatei, M. A., and Bloom, S. R. (2000). The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328.

    Google Scholar 

  • Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R. C., and Spiegelman, B. M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, A., Ferri, GL., Watson, E. et al. Processing, Distribution, and Function of VGF, a Neuronal and Endocrine Peptide Precursor. Cell Mol Neurobiol 24, 517–533 (2004). https://doi.org/10.1023/B:CEMN.0000023627.79947.22

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CEMN.0000023627.79947.22

Navigation