Skip to main content
Log in

The Effects of Calpain Inhibition on IkBα Degradation After Activation of PBMCs: Identification of the Calpain Cleavage Sites

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Human peripheral blood mononuclear cells (PBMCs) were activated using anti-CD3/CD28 (HIT3A/CD28.2) resulting in degradation of IkBα, an inhibitor of NFkB, relative to unactivated cells. Degradation of IkBα began by 30 min and proceeded for at least 5 h. Calpeptin, a calpain inhibitor, inhibited IkBα degradation in a time- and dose-dependent manner. Furthermore, calpain inhibition increased IkBα levels compared to nonactivated controls. Recombinant IkBα was incubated with purified porcine m-calpain in the presence of 0.1% Triton X-100, and the degradation products were monitored by SDS-PAGE and sequenced. Most of the degradation products were peptides derived from calpain, but one was derived from IkBα cleaved between amino acids 50 and 51 (glutamine and glutamic acid). The liberated fragment included the entire signal response domain (SRD), a region containing key serine and threonine residues necessary for phosphorylation by the IKKinase complex and sites required for ubiquitination. The results suggest that calpain plays an important role in IkBα degradation, a crucial event in T cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

references

  1. Malek, S., Huxford, T., and Ghosh, G. 1998. Ikappa Balpha functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-kappaB. J. Biol. Chem. 273(39):25427–25435.

    Google Scholar 

  2. Jacobs, M. D. and Harrison, S. C. 1998. Structure of an Ikappa-Balpha/NF-kappaB complex. Cell 95(6):749–758.

    Google Scholar 

  3. Haskill, S., Beg, A. A., Tompkins, S., Morris, J. S., Yurochko, A. D., Johannes, A. S., Mondal, K., Ralph, P., and Baldwin, A. S. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell 65(7):1281–1289.

    Google Scholar 

  4. Baldwin, A. S. 1996. The NF-kappa B and I kappa B proteins: new discoveries and insights. Ann. Rev. Immunol. 14:649–681.

    Google Scholar 

  5. Duckett, C. S., Perkinds, N. D., Kowalik, T. F., Schmid, R. M., Huang, E. S., Baldwin, A. S., and Nabel, G. J. 1993. Dimerization of NF-KB2 with RelA(p65) regulates DNA binding, transcriptional activation, and inhibition by an I kappa B-alpha (MAD-3). Molec. Cell. Biol. 13(3):1315–1322.

    Google Scholar 

  6. Sears, C., Olesen, J., Rubin, D., Finley, D., and Maniatis, T. 1998. NF-kappa B p 105 processing via the ubiquitin-proteasome pathway. J. Biol. Chem. 273(3):1409–1419.

    Google Scholar 

  7. Ganchi, P. A., Sun, S. C., Greene, W. C., and Ballard, D. W. 1992. I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol. Biol. Cell. 3(12):1339–1352.

    Google Scholar 

  8. Huxford, T., Huang, D. B., Malek, S., Ghosh, G. 1998. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95(6):729–731.

    Google Scholar 

  9. Palombella, V. J., Rando, O., Goldberg, A., and Maniatis, T. 1994. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785.

    Google Scholar 

  10. Han, Y., Weinman, S., Boldogh, I., Walker, R. K., and Brasier, A. R. 1999. Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappab activation. J. Biol. Chem. 274(2):787–794.

    Google Scholar 

  11. Trushin, S. A., Pennington, K. N., Algeciras-Schimnich, A., and Paya, C. V. 1999. Protein kinase C and calcineurin synergize to activate IkappaB kinase and NF-kappaB in T lymphocytes. J. Biol. Chem. 274(33):22923–22931.

    Google Scholar 

  12. Kahn-Perles, B., Lipcey, C., Lecine, P., Olive, D., and Imbert, J. 1997. Temporal and subunit-specific modulations of the Rel/NF-kappaB transcription factors through CD28 costimulation. J. Biol. Chem. 272(35):21774–21783.

    Google Scholar 

  13. Chen F., Lu, Y., Kuhn, D. C., Maki, M., Shi, X., Sun, S. C., and Domors, L. M. 1997. Calpain contributes to silica-induced I kappa B-alpha degradation and nuclear factor-kappa B activation. Arch. Biochem. Biophys. 342(2):383–388.

    Google Scholar 

  14. Schaecher, K., Goust, J. M., and Banik, N. L. 2001. The effects of calpain inhibition upon IL-2 and CD25 expression in human peripheral blood mononuclear cells. J. Neuroimmunol. 119(2):333–342.

    Google Scholar 

  15. Deshpande, R. V., Goust, J. M., Chakrabarti, A. K., Barbosa, E., Hogan, E. L., and Banik, N. L. 1995. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation. J. Biol. Chem. 270(6):2497–2505.

    Google Scholar 

  16. Selliah, N., Brooks, W. H., and Roszman, T. L. 1996. Proteolytic cleavage of alpha-actinin by calpain in T cells stimulated with anti-CD3 monoclonal antibody. J. Immunol. 156(9):3215–3221.

    Google Scholar 

  17. Shields, D. C., Schaecher, K. E., Saido, T. C., and Banik, N. L. 1999. A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc. Natl. Acad. Sci. USA 96(20):11486–11491.

    Google Scholar 

  18. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Google Scholar 

  19. Towbin, H, Stachlin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.

    Google Scholar 

  20. Vaessen, R. T., Krieke, J., and Groot, G. S. 1981. Protein transfer to nitrocellulose filters. A simple method for quantitation of single proteins in complex mixtures. FEBS Lett. 124:193–196.

    Google Scholar 

  21. Manna, S. K. and Aggarwal, B. B. 2000. Vesnarinone suppresses TNF-induced activation of NF-kappa B, c-Jun kinase, and apoptosis. J. Immunol. 164:5815–5825.

    Google Scholar 

  22. Imbert, V., Rupec, R. A., Livolsi, A., Pahl, H. L., Traenckner, E. B. M., Mueller-Dieckmann, C., Farahifar, D., Rossi, B., Auberger, P., Baouerie, P. A., and Poyron, J. F. 1998. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86:787–798.

    Google Scholar 

  23. Kunsch, C., Ruben, S. M., and Rosen, C. A. 1992. Selection of optimal kappa B/Rel DNA-binding motifs: Interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol. Cell. Biol. 12(10):4412–4421.

    Google Scholar 

  24. Maki, M., Bagci, H., Hamaguchi, K., Ueda, M., Murachi, T., and Hatanaka, M. 1989. Inhibition of calpain by a synthetic oligopeptide corresponding to an exon of the human calpastatin gene. J. Biol. Chem. 264(32):18866–18869.

    Google Scholar 

  25. Mustafa, S. B. and Olson, M. S. 1999. Effects of calcium channel antagonists on LPS-induced hepatic INOS expression. Am. J. Physiol. 277:G531–G360.

    Google Scholar 

  26. Fields, E. R., Seufzer, B. J., Oltz, E. M., and Miyamoto, S. 2000. A switch in distinct I kappa B alpha degradation mechanisms mediates constitutive NF-kappa B activation in mature B cells. J. Immunol. 164:4762–4767.

    Google Scholar 

  27. Chen, F., Demers, L. M., Vallyathan, V., Lu, Y., Castranova, V., and Shi, X. 2000. Impairment of NF-kappaB activation and modulation of gene expression by calpastatin. Am. J. Physiol. Cell Physiol. 279:C709–C716.

    Google Scholar 

  28. Phelps, C. B., Sengchanthalangsy, L. L., Malek, S., and Ghosh, G. 2000. Mechanism of kappa B DNA binding by Rel/NF-kappa B dimers. J. Biol. Chem. 275(32):24392–24399.

    Google Scholar 

  29. Baldi, L., Brown, K., Franzoso, G., and Siebenlist, U. 1996. Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of I kappa B-alpha. J. Biol. Chem. 271(1):376–379.

    Google Scholar 

  30. Schoonbroodt, S., Ferreira, V., Belpomme, M. B., Boelaert, J. R., Poels, S. L., Korner, M., and Piotte, J. 2000. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. J. Immunol. 164:4292–4300.

    Google Scholar 

  31. Shea, T. B. 1997. Phospholipids alter tau conformation, phosphorylation, proteolysis, and association with microtubules: implication for tau function under normal and degenerative conditions. J. Neurosci. Res. 50(1):114–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naren L. Banik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaecher, K., Goust, JM. & Banik, N.L. The Effects of Calpain Inhibition on IkBα Degradation After Activation of PBMCs: Identification of the Calpain Cleavage Sites. Neurochem Res 29, 1443–1451 (2004). https://doi.org/10.1023/B:NERE.0000026410.56000.dd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000026410.56000.dd

Navigation