Photosynthetica 2004, 42(2):173-178 | DOI: 10.1023/B:PHOT.0000040587.99518.a8

Changes in Morphology, Anatomy, and Photosynthetic Capacity of Needles of Japanese Larch (Larix kaempferi) Seedlings Grown in High CO2 Concentrations

N. Eguchi1, E. Fukatsu1, R. Funada1, H. Tobita2, M. Kitao2, Y. Maruyama2, T. Koike3
1 Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, e-mail
2 Forest and Forest Products Research Institute, Sapporo, Japan
3 Hokkaido University Forests, FSC, Sapporo, Japan

Photosynthetic traits of two-year-old Japanese larch seedlings (Larix kaempferi Carr.) grown at elevated CO2 concentrations were studied in relation to structural changes in the needles. Seedlings were grown at two CO2 concentrations, 360 (AC) and 720 (EC) μmol mol-1 at high and low nutrient supply rates, high N (HN) and low N (LN). The photosynthetic capacity fell significantly in EC+LN, but increased significantly in EC+HN. Since the mesophyll surface area exposed to intercellular space per unit leaf area (Ames/A) is correlated with the photosynthetic rate, we measured Ames/A for larch needles growing in EC. Changes of Ames/A in both EC+HN and EC+LN were very similar to the changes in photosynthetic capacity. This suggests that the changes of Ames/A in EC probably caused the changes in the photosynthetic capacity. The changes of Ames/A in EC were attributed to changes in the mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking morphological and structural adaptations into account as well as biochemical factors.

Additional key words: carboxylation efficiency; cell number; intercellular CO2 concentration; mesophyll surface area; needle thickness and width; net photosynthetic rate; nitrogen content; specific leaf area; starch

Published: June 1, 2004  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Eguchi, N., Fukatsu, E., Funada, R., Tobita, H., Kitao, M., Maruyama, Y., & Koike, T. (2004). Changes in Morphology, Anatomy, and Photosynthetic Capacity of Needles of Japanese Larch (Larix kaempferi) Seedlings Grown in High CO2 Concentrations. Photosynthetica42(2), 173-178. doi: 10.1023/B:PHOT.0000040587.99518.a8
Download citation

References

  1. Ainsworth, E.A., Davey, P.A., Hymus, G.J., Osborne, C.P., Rogers, A., Blum, H., Nösberger, J., Long, S.P.: Is stimulation of leaf photosynthesis by elevated carbon dioxide concen-tration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE).-Plant Cell Environ. 26: 705-714, 2003. Go to original source...
  2. Coleman, J.S., McConnaughay, K.D.M., Bazzaz, F.A.: Elevated CO2 and plant nitrogen-use: is reduced tissue nitrogen con-centration size-dependent?-Oecologia 93: 195-200, 1993. Go to original source...
  3. Cook, A.C., Tissue, D.T., Robert, S.W., Oechel, W.C.: Effect of long-term elevated [CO2] from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology.-Plant Cell Environ. 21: 417-425, 1998. Go to original source...
  4. Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis.-Annu. Rev. Plant Physiol. 33: 317-345, 1982. Go to original source...
  5. Funada, R., Abe, H., Furusawa, O., Imaizumi, H., Fukazawa, K., Ohtani, J.: The orientation and localization of cortical mi-crotubules in differentiating conifer tracheids during cell ex-pansion.-Plant Cell Physiol. 38: 210-212, 1997. Go to original source...
  6. Gower, S.T., Richards, J.H.: Larches: Deciduous conifers in an evergreen world.-BioSciences 40: 818-826, 1990. Go to original source...
  7. Greenep, H., Turnbull, M.H., Whitehead, D.: Response of pho-tosynthesis in second-generation Pinus radiata trees to long-term exposure to elevated carbon dioxide partial pressure.-Tree Physiol. 23: 569-576, 2003. Go to original source...
  8. Issop, H., Frehner, M., Long, S.P., Nösberger, J.: Sucrose-phosphate synthase responds differently to source-sink rela-tions and to photosynthetic rates: Lolium perenne L. growing at elevated pCO2 in the field.-Plant Cell Environ. 23: 597-607, 2000. Go to original source...
  9. James, S.A., Smith, W.K., Vogelmann, T.C.: Ontogenetic diffe-rences in mesophyll structure and chlorophyll distribution in Eucalyptus globulus ssp. globules (Myrtaceae).-Amer. J. Bot. 86: 198-207, 1999. Go to original source...
  10. Kitaoka, S., Koike, T., Quoreshi, A.M., Takagi, K., Wang, W., Shi, F., Kayama, M., Ishida, N., Mamiya, H., Sasa, K.: Seaso-nal changes in the photosynthetic capacity of Japanese larch trees planted on the Tomakomai National Forest, northern Japan.-Proc. AsiaFlux Net 1: 109-112, 2001.
  11. Kitin, P., Funada, R., Sano, Y., Beeckman, H., Ohtani, J.: Variations in the lengths of fusiform cambial cells and vessel elements in Kalopanax pictus.-Ann. Bot. 84: 621-632, 1999. Go to original source...
  12. Koehler, L.H.: Differentiation of carbohydrates by anthrone re-action rate and color intensity.-Anal. Chem. 24: 1576-1579, 1952. Go to original source...
  13. Koike, T.: Effects of CO2 in interaction with temperature and soil fertility on the foliar phenology of alder, birch, and maple seedlings.-Can. J. Bot. 73: 149-157, 1995. Go to original source...
  14. Koike, T., Häsler, R., Item, H.: Needles longevity and photo-synthetic performance in Cembran pine and Norway spruce growing on the north-and east-facing slopes at the timberline of Stillberg in Swiss Alps.-USDA, INT-GTR 309: 78-80, 1994.
  15. Koike, T., Yazaki, K., Funada, R., Kitao, M., Maruyama, Y., Takahashi, K., Maximov, T.C., Ivanov, B.I.: Photosynthetic characteristics of Dahurian larch, Scotch pine and white birch seedlings native to eastern Siberia raised under elevated CO2.-Eurasian J. Forest Res. 1: 31-37, 2000.
  16. Körner, C. Larcher, W.: Plant life in cold climates.-In: Long, S.P., Woodward, F.I. (ed.): Plants and Temperature. Pp. 25-57. Society for Experimental Biology, Cambridge 1988.
  17. Makino, A.: Biochemistry of C3-photosynthesis in high CO2.-J. Plant Res. 107: 79-84, 1994. Go to original source...
  18. Matyssek, R., Schulze, E.-D.: Heterosis in hybrid larch (Larix decidua×leptolepis). I. The role of leaf characteristics.-Trees 1: 219-224, 1987. Go to original source...
  19. Michèle, R., Slaton, R., Smith, W.K.: Mesophyll architecture and cell exposure to intercellular air space in alpine, desert, and forest species.-Int. nat. J. Plant Sci. 163: 937-948, 2002. Go to original source...
  20. Nakano, H., Makino, A., Mae, T.: The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves.-Plant Physiol. 115: 191-198, 1997. Go to original source...
  21. Nobel, P.S.: Leaves and fluxes: CO2 conductances and resistan-ces.-In: Physicochemical & Environmental Plant Physio-logy. 2nd Pp. 315-324. Academic Press, San Diego 1999.
  22. Nobel, P.S., Zaragoza, L.J., Smith, W.K.: Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus Henckel.-Plant Physiol. 55: 1067-1070, 1975. Go to original source...
  23. Oguchi, R., Hikosaka, K., Hirose, T.: Does the photosynthetic light-acclimation need change in leaf anatomy?-Plant Cell Environ. 26: 505-512, 2003. Go to original source...
  24. Onaindia, M. Amezaga, I.: Seasonal variation in the seed banks of native woodland and coniferous plantations in Northern Spain.-Forest Ecol. Manage. 126: 163-172, 2000. Go to original source...
  25. Sage, R.F., Sharkey, T.D., Seemann, J.R.: Acclimation of pho-tosynthesis to elevated CO2 in five C3 species.-Plant Physiol. 89: 590-596, 1989. Go to original source...
  26. ©esták, Z., Tichá, I., È atský, J., Solárová, J., Pospíąilová, J., Hodá ò ová, D.: Integration of photosynthetic characteristics during leaf development.-In: ©esták, Z. (ed.): Photosynthesis during Leaf Development. Pp. 263-286. Dr W. Junk Publ., Dordrecht-Boston-Lancaster; Academia, Praha 1985. Go to original source...
  27. Slaton, M.R. Smith, W.K.: Mesophyll architecture and cell ex-posure to intercellular air space in alpine, desert, and forest species.-Int. nat. J. Plant Sci. 163: 937-948, 2002. Go to original source...
  28. Terashima, I., Miyazawa, S.-I., Hanba, Y.T.: Why are sun leaves thicker than shade leaves?-Consideration based on analysis of CO2 diffusion in the leaf.-J. Plant Res. 114: 93-105, 2001. Go to original source...
  29. Thain, J.F.: Curvature correction factors in the measurement of cell surface areas in plant tissues.-J. exp. Bot. 34: 87-94, 1983. Go to original source...
  30. Tichá, I.: Ontogeny of leaf morphology and anatomy.-In: ©esták, Z. (ed.): Photosynthesis during Leaf Development. Pp. 16-50. Dr W. Junk Publ., Dordrecht-Boston-Lancaster; Academia, Praha 1985. Go to original source...
  31. Turnbull, M.H., Tissue, D.T., Griffin, K.L., Rogers, G.N.D., Whitehead, D.: Photosynthetic acclimation to long-term expo-sure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles.-Plant Cell Environ. 21: 1019-1028, 1998. Go to original source...
  32. Usuda, H., Shimogawara, K.: The effects of increased atmo-spheric carbon dioxide on growth, carbohydrates, and photo-synthesis in radish, Raphanus sativus.-Plant Cell Physiol. 39: 1-7, 1998. Go to original source...
  33. Vodnik, D., Pfanz, H., Ma è ek, I., Kastelec, D., Lojen, S., Batiè, F.: Photosynthesis of cockspur [Echinochloa crus-galli (L.) Beauv.] at sites of naturally elevated CO2 concentration.-Photosynthetica 40: 575-579, 2002. Go to original source...
  34. Yáñez-Espinosa, L., Terrazas, T., L ü pez-Mata, L., Valdez-Hernández, J.I.: Leaf trait variation in three species through canopy strata in a semi-evergreen neotropical forest.-Can. J. Bot. 81: 398-404, 2003. Go to original source...
  35. Yazaki, K., Funada, R., Mori, S., Maruyama, Y., Abaimov, A.P., Kayama, M., Koike, T.: Growth and annual ring struc-ture of Larix sibirica grown at different carbon dioxide con-centrations and nutrient supply rates.-Tree Physiol. 21: 1223-1229, 2001. Go to original source...