Skip to main content
Log in

ADP-Glucose Pyrophosphorylase: A Regulatory Enzyme for Plant Starch Synthesis

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In plants, the synthesis of starch occurs by utilizing ADP-glucose as the glucosyl donor for the elongation of α-1,4-glucosidic chains. In photosynthetic bacteria the synthesis of glycogen follows a similar pathway. The first committed step in these pathways is the synthesis of ADP-glucose in a reaction catalyzed by ADP-glucose pyrophosphorylase (ADPGlc PPase). Generally, this enzyme is allosterically regulated by intermediates of the major carbon assimilatory pathway in the respective organism. In oxygenic photosynthesizers, ADPGlc PPase is mainly regulated by 3-phosphoglycerate (activator) and inorganic orthophosphate (inhibitor), interacting in four different patterns. Recent reports have shown that in higher plants, some of the enzymes could also be redox regulated. In eukaryotes, the enzyme is a heterotetramer comprised of two distinct subunits, a catalytic and a modulatory subunit. The latter has been proposed as related to variations in regulation of the enzyme in different plant tissues. Random and site-directed mutagenesis experiments of conserved amino acids revealed important residues for catalysis and regulation. Prediction of the ADPGlc PPase secondary structure suggests that it shares a common folding pattern to other sugar-nucleotide pyrophosphorylases, and they evolved from a common ancestor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth C, Tarvis M and Clark J (1993) Isolation and analysis of a cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat. Plant Mol Biol 23: 23–33

    Article  PubMed  Google Scholar 

  • Ainsworth C, Hosein F, Tarvis M, Weir F, Burrell M, Devos KM and Gale MD (1995) Adenosine diphosphate glucose pyrophosphorylase genes in wheat: differential expression and gene mapping. Planta 197: 1–10

    Article  PubMed  Google Scholar 

  • ap Rees T (1995) Where do plants make ADP-Glc? In: Pontis H, Salerno G and Echeverria E (eds) Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology, pp 49–62. American Society of Plant Physiologists, Rockville, Maryland

    Google Scholar 

  • Badenhuizen IP (1969) The Biogenesis of Starch Granules in Higher Plants. Appleton-Century Crofts, New York

    Google Scholar 

  • Ball K and Preiss J (1994) Allosteric sites of the large subunit of the spinach leaf ADPglucose pyrophosphorylase. J Biol Chem 269: 24706–24711

    PubMed  Google Scholar 

  • Ball S, Marianne T, Dirick L, Fresnoy M, Delrue B and Decq A (1991) A Chlamydomonas reinhardtii low starch mutant is defective for 3-phosphoglycerate activation and orthophosphate inhibition of ADPglucose pyrophosphorylase. Planta 185: 17–26

    Article  Google Scholar 

  • Ballicora MA, Laughlin MJ, Fu Y, Okita TW, Barry GF and Preiss J (1995) Adenosine 5′-diphosphate-glucose pyrophosphorylase from potato tuber. Significance of the N terminus of the small subunit for catalytic properties and heat stability. Plant Physiol 109: 245–251

    Article  PubMed  Google Scholar 

  • Ballicora MA, Fu Y, Nesbitt NM and Preiss J (1998) ADPGlucose pyrophosphorylase from potato tubers. Site-directed mutagenesis studies of the regulatory sites. Plant Physiol 118: 265–274

    Article  PubMed  Google Scholar 

  • Ballicora MA, Fu Y, Frueauf JB and Preiss J (1999) Heat stability of the potato tuber ADP-glucose pyrophosphorylase: role of Cys residue 12 in the small subunit. Biochem Biophys Res Commun 257: 782–786

    Article  PubMed  Google Scholar 

  • Ballicora MA, Frueauf JB, Fu Y, Schurmann P and Preiss J (2000) Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J Biol Chem 275: 1315–1320

    Article  PubMed  Google Scholar 

  • Ballicora MA, Sesma JI, Iglesias AA and Preiss J (2002) Characterization of chimeric ADPglucose pyrophosphorylases of Escherichia coli and Agrobacterium tumefaciens. Importance of the C-terminus on the selectivity for allosteric regulators. Biochemistry 41: 9431–9437

    Article  PubMed  Google Scholar 

  • Ballicora MA, Iglesias AA and Preiss J (2003) ADPglucose pyrophosphorylase; a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67: 213–225

    Article  PubMed  Google Scholar 

  • Blankenfeldt W, Asuncion M, Lam JS and Naismith JH (2000) The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J 19: 6652–6663

    Article  PubMed  Google Scholar 

  • Branden CI (1980) Relation between structure and function of alpha/beta-proteins. Q Rev Biophys 13: 317–338

    PubMed  Google Scholar 

  • Brangeon J, Reyss A and Prioul JL (1997) In situ detection of ADPglucose pyrophosphorylase expression during maize endosperm development. Plant Physiol Biochem 3: 847–858

    Google Scholar 

  • Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C and Bourne Y (1999) Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J 18: 4096–4107

    Article  PubMed  Google Scholar 

  • Buchanan BB and Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24: 47–53

    Article  PubMed  Google Scholar 

  • Burgess D, Penton A, Dunsmuir P and Dooner H (1997) Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons. Plant Mol Biol 33: 431–444

    Article  PubMed  Google Scholar 

  • Burton RA, Bewley JD, Smith AM, Bhattacharyya MK, Tatge H, Ring S, Bull V, Hamilton WD and Martin C (1995) Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J 7: 3–15

    Article  PubMed  Google Scholar 

  • Burton RA, Johnson PE, Beckles DM, Fincher GB, Jenner HL, Naldrett MJ and Denyer K (2002) Characterization of the Genes Encoding the Cytosolic and Plastidial Forms of ADP-Glucose Pyrophosphorylase in Wheat Endosperm. Plant Physiol 130: 1464–1475

    Article  PubMed  Google Scholar 

  • Caspar T, Huber SC and Somerville C (1985) Alterations in growth, photosynthesis and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol 79: 11–17

    Google Scholar 

  • Charng YY, Kakefuda G, Iglesias AA, Buikema WJ and Preiss J (1992) Molecular cloning and expression of the gene encoding ADPglucose pyrophosphorylase from the cyanobacterium Anabaena sp. strain PCC 7120. Plant Mol Biol 20: 37–47

    Article  PubMed  Google Scholar 

  • Charng YY, Iglesias AA and Preiss J (1994) Structure-function relationships of cyanobacterial ADP-glucose pyrophosphorylase. Site-directed mutagenesis and chemical modification of the activator-binding sites of ADP-glucose pyrophosphorylase from Anabaena PCC 7120. J Biol Chem 269: 24107–24113

    PubMed  Google Scholar 

  • Charng YY, Sheng J and Preiss J (1995) Mutagenesis of an amino acid residue in the activator-binding site of cyanobacterial ADP-glucose pyrophosphorylase causes alteration in activator specificity. Arch Biochem Biophys 318: 476–480

    Article  PubMed  Google Scholar 

  • Chen BY and Janes HW (1997) Multiple forms of ADPglucose pyrophosphorylase from tomato fruit. Plant Physiol 113: 235–241

    Article  PubMed  Google Scholar 

  • Chen BY, Wang Y and Janes HW (1998a) ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit. Plant Physiol 116: 101–106

    Article  PubMed  Google Scholar 

  • Chen BY, Janes HW and Gianfagna T (1998b) PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato. Plant Sci 136: 59–67

    Article  PubMed  Google Scholar 

  • Copeland L and Preiss J (1981) Purification of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol 68: 996–1001

    Google Scholar 

  • Delrue B, Fontaine T, Routier F, Decq A, Wieruszeski JM, Van Den Koornhuyse N, Maddelein ML, Fournet B and Ball S (1992) Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. J Bacteriol 174: 3612–3620

    PubMed  Google Scholar 

  • Denyer K and Smith A (1988) The capacity of plastids from developing pea cotyledons to synthesize acetyl CoA. Planta 173: 172–182

    Article  Google Scholar 

  • Denyer K, Sidebottom C, Hylton CM and Smith AM (1993) Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J 4: 191–198

    Article  PubMed  Google Scholar 

  • Denyer K, Hylton C, Jenner CF and Smith AM (1995) Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta 196: 256–265

    Article  Google Scholar 

  • Denyer K, Dunlap F, Thorbjornsen T, Keeling P and Smith AM (1996) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol 112: 779–785

    Article  PubMed  Google Scholar 

  • Doan DN, Rudi H and Olsen OA (1999) The allosterically unregulated isoform of ADP-glucose pyrophosphorylase from barley endosperm is the most likely source of ADP-glucose incorporated into endosperm starch. Plant Physiol 121: 965–975

    Article  PubMed  Google Scholar 

  • Dry I, Smith A, Edwards A, Bhattacharyya M, Dunn P and Martin C (1992) Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant J 2: 193–202

    PubMed  Google Scholar 

  • Echeverria E, Boyer CD, Thomas PA, Liu KC and Shannon J (1988) Enzyme activities associated with maize kernel amyloplasts. Plant Physiol 86: 786–792

    Google Scholar 

  • Edwards GE and Walker DA (1983) C3, C4: Mechanisms of Cellular and Environmental Regulation of Photosynthesis. University of California Press, Berkeley

    Google Scholar 

  • Emes MJ and Neuhaus HE (1997) Metabolism and transport in nonphotosynthetic plastids. J Exp Bot 48: 1995–2005

    Article  Google Scholar 

  • Entwistle G and ap Rees T (1988) Enzymic capacities of amyloplasts from wheat (Triticum aestivum) endosperm. Biochem J 255: 391–396

    PubMed  Google Scholar 

  • Espada J (1962) Enzymic synthesis of adenosine diphosphate glucose from glucose-1-phosphate and adenosine triphosphate. J Biol Chem 237: 3577–3581

    Google Scholar 

  • Frueauf JB, Ballicora MA and Preiss J (2001) Aspartate residue 142 is important for catalysis by ADP-glucose pyrophosphorylase from Escherichia coli. J Biol Chem 276: 46319–46325

    Article  PubMed  Google Scholar 

  • Frueauf JB, Ballicora MA and Preiss J (2002) Alteration of inhibitor selectivity by site-directed mutagenesis of Arg(294) in the ADP-glucose pyrophosphorylase from Anabaena PCC 7120. Arch Biochem Biophys 400: 208–214

    Article  PubMed  Google Scholar 

  • Frueauf JB, Ballicora MA and Preiss J (2003) ADP-glucose pyrophosphorylase from potato tuber: site-directed mutagenesis of homologous aspartic acid residues in the small and large subunits. Plant J 33: 503–511

    Article  PubMed  Google Scholar 

  • Fu Y, Ballicora MA and Preiss J (1998a) Mutagenesis of the glucose-1-phosphate-binding site of potato tuber ADP-glucose pyrophosphorylase. Plant Physiol 117: 989–996

    Article  PubMed  Google Scholar 

  • Fu Y, Ballicora MA, Leykam JF and Preiss J (1998b) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 273: 25045–25052

    Article  PubMed  Google Scholar 

  • Gardiol A and Preiss J (1990) Escherichia coli E-39 ADPglucose synthetase has different activation kinetics from the wild-type allosteric enzyme. Arch Biochem Biophys 280: 175–180

    Article  PubMed  Google Scholar 

  • Ghosh HP and Preiss J (1966) Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241: 4491–4504

    PubMed  Google Scholar 

  • Giroux MJ, Shaw J, Barry G, Cobb BJ, Greene T, Okita T and Hannah LC (1996) A single gene mutation that increases maize seed weight. Proc Natl Acad Sci USA 93: 5824–5829

    Article  PubMed  Google Scholar 

  • Goldbeter A and Koshland Jr DE (1982) Sensitivity amplification in biochemical systems. Q Rev Biophys 15: 555–591

    PubMed  Google Scholar 

  • Gomez-Casati DF and Iglesias AA (2002) ADP-glucose pyrophosphorylase from wheat endosperm. Purification and characterization of an enzyme with novel regulatory properties. Planta 214: 428–434

    Article  PubMed  Google Scholar 

  • Gomez-Casati DF, Aon MA and Iglesias AA (1999) Ultrasensitive glycogen synthesis in Cyanobacteria. FEBS Lett 446: 117–121

    Article  PubMed  Google Scholar 

  • Gomez-Casati DF, Aon MA and Iglesias AA (2000) Kinetic and structural analysis of the ultrasensitive behaviour of cyanobacterial ADP-glucose pyrophosphorylase. Biochem J 350: 139–147

    Article  PubMed  Google Scholar 

  • Gomez-Casati DF, Igarashi RY, Berger CN, Brandt ME, Iglesias AA and Meyer CR (2001) Identification of functionally important amino-terminal arginines of Agrobacterium tumefaciens ADPglucose pyrophosphorylase by alanine scanning mutagenesis. Biochemistry 40: 10169–10178

    Article  PubMed  Google Scholar 

  • Gomez-Casati DF, Cortassa S, Aon MA and Iglesias AA (2003) Ultrasensitive behavior in the synthesis of storage polysaccharides in cyanobacteria. Planta 216: 969–975

    PubMed  Google Scholar 

  • Greene TW, Woodbury RL and Okita TW (1996) Aspartic acid 413 is important for the normal allosteric functioning of ADPglucose pyrophosphorylase. Plant Physiol 112: 1315–1320

    Article  PubMed  Google Scholar 

  • Haugen TH and Preiss J (1979) Biosynthesis of bacterial glycogen. The nature of the binding of substrates and effectors to ADPglucose synthase. J Biol Chem 254: 127–136

    PubMed  Google Scholar 

  • Heldt HW, Chon CJ, Maronde D, Herold A, Stankovic ZS, Walker DA, Kraminer A, Kirk MR and Heber U (1977) Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol 59: 1146–1155

    Google Scholar 

  • Hill MA, Kaufmann K, Otero J and Preiss J (1991) Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli. J Biol Chem 266: 12455–12460

    PubMed  Google Scholar 

  • Hizukuri S (1995) Starch: analytical aspects. In: Eliansson AC (ed) Carbohydrates in Food, pp 347–429. Marcel Dekker, New York

    Google Scholar 

  • Hylton C and Smith AM (1992) The rb mutation of peas causes structural and regulatory changes in ADP-Glc pyrophosphorylase from developing embryos. Plant Physiol 99: 1626–1634

    Google Scholar 

  • Hylton C, Denyer K, Keeling PL, Chang MT and Smith A (1996) The effect of the waxy mutations on the granule-bound starch synthases of barley and maize endosperms. Planta 198: 230–237

    Article  Google Scholar 

  • Iglesias AA and Podestá FE (1996) Photosynthate formation and partitioning in crop plants. In: Pessarakli M (ed) Handbook of Photosynthesis, pp 681–698. Marcel Dekker, New York

    Google Scholar 

  • Iglesias AA and Preiss J (1992) Bacterial glycogen and plant starch biosynthesis. Biochem Educ 20: 196–203

    Article  Google Scholar 

  • Iglesias AA, Kakefuda G and Preiss J (1991) Regulatory and structural properties of the cyanobacterial ADPglucose pyrophosphorylases. Plant Physiol 97: 1187–1195

    Google Scholar 

  • Iglesias AA, Kakefuda G and Preiss J (1992) Involvement of arginine residues in the allosteric activation and inhibition of Synechocystis PCC 6803 ADPglucose pyrophosphorylase. J Protein Chem 11: 119–128

    Article  PubMed  Google Scholar 

  • Iglesias AA, Barry GF, Meyer C, Bloksberg L, Nakata PA, Greene T, Laughlin MJ, Okita TW, Kishore GM and Preiss J (1993) Expression of the potato tuber ADP-glucose pyrophosphorylase in Escherichia coli. J Biol Chem 268: 1081–1086

    PubMed  Google Scholar 

  • Iglesias AA, Charng YY, Ball S and Preiss J (1994) Characterization of the kinetic, regulatory, and structural properties of ADPglucose pyrophosphorylase from Chlamydomonas reinhardtii. Plant Physiol 104: 1287–1294

    Article  PubMed  Google Scholar 

  • Jacquot JP, Lancelin JM and Meyer Y (1997) Thioredoxins: structure and function in plant cells. New Phytol 136: 543–570

    Article  Google Scholar 

  • Johnson PE, Patron NJ, Bottrill AR, Dinges JR, Fahy BF, Parker ML, Waite DN and Denyer K (2003) A low-starch barley mutant, Riso 16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit. Plant Physiol 131: 684–696

    Article  PubMed  Google Scholar 

  • Kakefuda G, Charng YY, Iglesias AA and Preiss J (1992) Molecular cloning and sequencing of ADP-glucose pyrophosphorylase from Synechocystis PCC 6803. Plant Physiol 99: 344–347

    Google Scholar 

  • Kang F and Rawsthorne S (1994) Starch and fatty acid synthesis in plastids from developing embryos of oilseed rape (Brassica napus L.). Plant J 6: 795–805

    Article  Google Scholar 

  • Kavakli IH, Kato C, Choi SB, Kim KH, Salamone PR, Ito H and Okita TW (2002) Generation, characterization, and heterologous expression of wild-type and up-regulated forms of Arabidopsis thaliana leaf ADP-glucose pyrophosphorylase. Planta 215: 430–439

    Article  PubMed  Google Scholar 

  • Kim TW, Francheschi VR, Okita TW, Robinson NL, Morell M and Preiss J (1989) Immunocytochemical localization of ADPglucose pyrophosphorylase in developing potato tuber cells. Plant Physiol 91: 217–220

    Google Scholar 

  • Kleczkowski LA (1996) Back to the drawing board: redefining starch synthesis in cereals. Trends Plant Sci 1: 363–364

    Article  Google Scholar 

  • Kleczkowski LA, Villand P and Olsen OA (1993a) Hysteresis and reversible cold-inactivation of ADPglucose pyrophosphorylase from barley seeds. Z Naturforsch 48c: 457–460

    Google Scholar 

  • Kleczkowski LA, Villand P, Preiss J and Olsen OA (1993b) Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. J Biol Chem 268: 6228–6233

    PubMed  Google Scholar 

  • Kleczkowski LA, Villand P, Lüthi E, Olsen OA and Preiss J (1993c) Insensitivity of barley endosperm ADP-Glc pyrophosphorylase to 3-phosphoglycerate and orthophosphate regulation. Plant Physiol 101: 179–186

    Article  PubMed  Google Scholar 

  • Koshland DE (1987) Switches, thresholds and ultrasensitivity. Trends Biochem Sci 12: 225–229

    Article  Google Scholar 

  • Kostrewa D, D'Arcy A, Takacs B and Kamber M (2001) Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33A resolution and in complex with UDP-N-acetylglucosamine and Mg(2+) at 1.96A resolution. J Mol Biol 305: 279–289

    Article  PubMed  Google Scholar 

  • Laughlin MJ, Chantler SE and Okita TW (1998a) N-and C-terminal peptide sequences are essential for enzyme assembly, allosteric, and/or catalytic properties of ADP-glucose pyrophosphorylase. Plant J 14: 159–168

    Article  PubMed  Google Scholar 

  • Laughlin MJ, Payne JW and Okita TW (1998b) Substrate binding mutants of the higher plant ADP-glucose pyrophosphorylase. Phytochemistry 47: 621–629

    Article  PubMed  Google Scholar 

  • Lee YM and Preiss J (1986) Covalent modification of substrate-binding sites of Escherichia coli ADP-glucose synthetase. Isolation and structural characterization of 8-azido-ADP-glucose-incorporated peptides. J Biol Chem 261: 1058–1064

    PubMed  Google Scholar 

  • Lee YM, Mukherjee S and Preiss J (1986) Covalent modification of Escherichia coli ADPglucose synthetase with 8-azido substrate analogs. Arch Biochem Biophys 244: 585–595

    Article  PubMed  Google Scholar 

  • Leloir LF (1971) Two decades of research on the biosynthesis of saccharides. Science 172: 1299–1303

    PubMed  Google Scholar 

  • Leloir LF, deFekete MAR and Cardini CE (1961) Starch and oligosaccharide synthesis from uridine diphosphate glucose. J Biol Chem 236: 636–641

    PubMed  Google Scholar 

  • Lemesle-Varloot L, Henrissat B, Gaboriaud C, Bissery V, Morgat A and Mornon JP (1990) Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie 72: 555–574

    Article  PubMed  Google Scholar 

  • Li L and Preiss J (1992) Characterization of ADP-glucose pyrophosphorylase from a starch-deficient mutant of Arabidopsis thaliana (L). Carbohydr Res 227: 227–239

    Article  Google Scholar 

  • Lin TP, Caspar T, Somerville C and Preiss J (1988a) Isolation and characterization of a starchless mutant of Arabidopsis thaliana L. Henyh lacking ADPglucose pyrophosphorylase activity. Plant Physiol 86: 1131–1135

    Google Scholar 

  • Lin TP, Caspar T, Somerville C and Preiss J (1988b) A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88: 1175–1181

    Google Scholar 

  • MacDonald FD and Preiss J (1983) Solubilization of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiol 73: 175–178

    Google Scholar 

  • Manners DJ and Matheson NK (1981) The fine structure of amylopectin. Carbohydr Res 282: 247–262

    Google Scholar 

  • Martin W and Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118: 9–17

    Article  PubMed  Google Scholar 

  • Matheson NK (1996) The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally-nocturnally. Carbohydr Res 282: 247–262

    Article  PubMed  Google Scholar 

  • May TB, Shinabarger D, Boyd A and Chakrabarty AM (1994) Identification of amino acid residues involved in the activity of phosphomannose isomerase-guanosine 5′-diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 269: 4872–4877

    PubMed  Google Scholar 

  • Miller ME and Chourey PS (1995) Intracellular immunolocalization of adenosine 5′-diphosphoglucose pyrophosphorylase in developing endosperm cells of maize (Zea mays L.). Planta 197: 522–527

    Article  Google Scholar 

  • Mizuno K, Kimura K, Arai Y, Kawasaki T, Shimada H and Baba T (1992) Starch branching enzymes from immature rice seeds. J Biochem (Tokyo) 112: 643–651

    Google Scholar 

  • Morell MK, Bloom M, Knowles V and Preiss J (1987) Subunit structure of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol 85: 182–187

    Google Scholar 

  • Morell M, Bloom M and Preiss J (1988) Affinity labeling of the allosteric activator site(s) of spinach leaf ADP-glucose pyrophosphorylase. J Biol Chem 263: 633–637

    PubMed  Google Scholar 

  • Morrison WR and Karkalas J (1990) Starch. In: Dey PM (ed) Methods in Plant Biochemistry, pp 323–352. Academic Press, London

    Google Scholar 

  • Nakamura Y and Imamura M (1985) Regulation of ADP-glucose pyrophosphorylase from Chlorella vulgaris. Plant Physiol 78: 601–605

    Google Scholar 

  • Nakamura Y and Kawaguchi K (1992) Multiple forms of ADPglucose pyrophosphorylase of rice endosperm. Physiol Plant 84: 336–342

    Article  Google Scholar 

  • Nakata PA, Anderson JM and Okita TW (1994) Structure and expression of the potato ADP-glucose pyrophosphorylase small subunit. J Biol Chem 269: 30798–30807

    PubMed  Google Scholar 

  • Nelson OE, Chourey PS and Chang MT (1978) Nucleoside diphosphate sugar-starch glucosyl transferase activity of wx starch granules. Plant Physiol 62: 383–386

    Google Scholar 

  • Neuhaus HE and Stitt M (1990) Control analysis of photosynthate partitioning: Impact of reduced activity of ADPglucose pyrophosphorylase or plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis. Planta 182: 445–454

    Google Scholar 

  • Okita T, Nakata PA, Anderson JM, Sowokinos JR, Morell M and Preiss J (1990) The subunit structure of potato tuber ADP-glucose pyrophosphorylase. Plant Physiol 93: 785–790

    Google Scholar 

  • Olsen LR and Roderick SL (2001) Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 40: 1913–1921

    Article  PubMed  Google Scholar 

  • Outlaw Jr WH and Manchester J (1979) Guard cells starch concentration quantitatively related to stomatal aperture. Plant Physiol 64: 79–82

    Google Scholar 

  • Park SW and Chung WI (1998) Molecular cloning and organ-specific expression of three isoforms of tomato ADP-glucose pyrophosphorylase gene. Gene 206: 215–221

    Article  PubMed  Google Scholar 

  • Parsons TF and Preiss J (1978a) Biosynthesis of bacterial glycogen. Incorporation of pyridoxal phosphate into the allosteric activator site and an ADP-glucose-protected pyridoxal phosphate binding site of Escherichia coli B ADP-glucose synthase. J Biol Chem 253: 6197–6202

    PubMed  Google Scholar 

  • Parsons TF and Preiss J (1978b) Biosynthesis of bacterial glycogen. Isolation and characterization of the pyridoxal-P allosteric activator site and the ADP-glucose-protected pyridoxal-P binding site of Escherichia coli B ADP-glucose synthase. J Biol Chem 253: 7638–7645

    PubMed  Google Scholar 

  • Plaxton WC and Preiss J (1987) Purification and properties of non-proteolytically degraded ADPglucose pyrophosphorylase from maize endosperm. Plant Physiol 83: 105–112

    Google Scholar 

  • Pozueta-Romero J, Viale AM and Akazawa T (1991) Comparative analysis of mitochondrial and amyloplast adenylate translocators. FEBS Lett 287: 62–66

    Article  PubMed  Google Scholar 

  • Preiss J (1982) Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol 54: 431–454

    Article  Google Scholar 

  • Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38: 419–458

    Article  PubMed  Google Scholar 

  • Preiss J (1988) Biosynthesis of starch and its regulation. In: Preiss J (ed) The Biochemistry of Plants: Carbohydrates, Structure and Function, pp 184–254. Academic Press, New York

    Google Scholar 

  • Preiss J (1991) Biology and molecular biology of starch synthesis and its regulation. In: Mifflin B (ed) Oxford Surveys of Plant Molecular and Cell Biology, pp 59–114. Oxford University Press, Oxford

    Google Scholar 

  • Preiss J (1999) Biosynthesis of bacterial and mammalian glycogen and plant starch synthesis and their regulation. In: Hecht SM (ed) Biorganic Chemistry: carbohydrates, pp 489–554. Oxford University Press, Oxford

    Google Scholar 

  • Preiss J and Levi C (1980) Starch biosynthesis and degradation. In: Preiss J (ed) The Biochemistry of Plants, pp 371–423. Academic Press, New York

    Google Scholar 

  • Preiss J and Romeo T (1994) Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol 47: 299–329

    PubMed  Google Scholar 

  • Preiss J and Sivak MN (1998a) Starch and glycogen biosynthesis. In: Pinto BM (ed) Comprehensive Natural Products Chemistry, pp 441–495. Pergamon Press, Oxford

    Google Scholar 

  • Preiss J and Sivak MN (1998b) Biochemistry, molecular biology and regulation of starch synthesis. Genet Eng 20: 177–223

    Google Scholar 

  • Preiss J, Cress D, Hutny J, Morell M, Bloom M, Okita T and Larsen R (1989) Regulation of starch synthesis. Biochemical and genetic studies. In: Somnet P and Whitaker J (eds) Biocatalysis in Agricultural Biotechnology, pp 84–92. American Chemical Society, Washington, DC

    Google Scholar 

  • Preiss J, Danner S, Summers PS, Morell M, Barton CR, Yang L and Nieder M (1990) Molecular characterization of the brittle-2 gene effect on maize endosperm ADPglucose pyrophosphorylase subunits. Plant Physiol 92: 881–885

    Google Scholar 

  • Recondo E and Leloir LF (1961) Adenosine diphosphate glucose and starch synthesis. Biochem Biophys Res Commun 6: 85–88

    Article  PubMed  Google Scholar 

  • Ritte G and Raschke K (2003) Metabolite export of isolated guard cell chloroplasts of Vicia faba. New Phytologist 159: 195–202

    Article  Google Scholar 

  • Rossman MG, Moras D and Olsen KW (1974) Chemical and biological evolution of a nucleotide binding protein. Nature 250: 194–199

    Google Scholar 

  • Rost B and Sander C (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci USA 90: 7558–7562

    PubMed  Google Scholar 

  • Rudi H, Doan DNP and Olsen OA (1997) A (His)6-tagged recombinant barley (Hordeum vulgare L.) endosperm ADPglucose pyrophosphorylase expressed in the baculovirus-insect cell system is insensitive to regulation by 3-phosphoglycerate and inorganic phosphate. FEBS Lett 419: 124–130

    Article  PubMed  Google Scholar 

  • Sachs J (1887) In: Ward HM (ed) Lectures of the Physiology of Plants, pp 304–325. Clarendon Press, Oxford

    Google Scholar 

  • Salamone PR, Kavakli IH, Slattery CJ and Okita TW (2002) Directed molecular evolution of ADPglucose pyrophosphorylase. Proc Natl Acad Sci USA 99: 1070–1075

    Article  PubMed  Google Scholar 

  • Sanwal GG and Preiss J (1967) Biosynthesis of starch in Chlorella pyrenoidosa. II. Regulation of ATP: alpha-D-glucose 1-phosphate adenyl transferase (ADP-glucose pyrophosphorylase) by inorganic phosphate and 3-phosphoglycerate. Arch Biochem Biophys 119: 454–469

    Article  PubMed  Google Scholar 

  • Sanwal GG, Greenberg E, Hardie J, Cameron EC and Preiss J (1968) Regulation of starch biosynthesis in plant leaves: activation and inhibition of ADPglucose pyrophosphorylase. Plant Physiol 43: 417–427

    PubMed  Google Scholar 

  • Saraste M, Sibbald PR and Wittinghofer W (1990) The P-loop — a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci 15: 430–434

    Article  PubMed  Google Scholar 

  • Sheng J and Preiss J (1997) Arginine294 is essential for the inhibition of Anabaena PCC 7120 ADPglucose pyrophosphorylase by phosphate. Biochemistry 36: 13077–13084

    Article  PubMed  Google Scholar 

  • Sheng J, Charng YY and Preiss J (1996) Site-directed mutagenesis of lysine382, the activator-binding site, of ADPglucose pyrophosphorylase from Anabaena PCC 7120. Biochemistry 35: 3115–3121

    Article  PubMed  Google Scholar 

  • Shinabarger D, Berry A, May TB, Rothmel R, Fialho A and Chakrabarty AM (1991) Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem 266: 2080–2088

    PubMed  Google Scholar 

  • Shure M, Wessler S and Fedoroff N (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35: 225–233

    Article  PubMed  Google Scholar 

  • Sikka VK, Choi S-B, Kavakli IH, Sakulsingharoj C, Gupta S, Ito H and Okita TW (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Sci 161: 461–468

    Article  Google Scholar 

  • Singh BK, Greenberg E and Preiss J (1984) ADPglucose pyrophosphorylase from the CAM plants Hoya carnosa and Xerosicyos danguyi. Plant Physiol 74: 711–716

    Google Scholar 

  • Sivak MN and Preiss J (1998) Starch: basic science to biotechnology. In: Taylor SL (ed) Advances in Food and Nutrition Research, pp 1–199. Academic Press, San Diego, California

    Google Scholar 

  • Sivaraman J, Sauve V, Matte A and Cygler M (2002) Crystal structure of Escherichia coli glucose-1-phosphate thymidylyltransferase (RffH) complexed with dTTP and Mg2+. J Biol Chem 277: 44214–44219

    Article  PubMed  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE and Giroux MJ (2002) Enhanced ADPglucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA 99: 1724–1729

    Article  PubMed  Google Scholar 

  • Smith-White BJ and Preiss J (1992) Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol 34: 449–464

    Article  PubMed  Google Scholar 

  • Sowokinos JR and Preiss J (1982) Pyrophosphorylases in Solanum tuberosum III. Purification, physical and catalytic properties of ADPglucose pyrophosphorylase in potatoes. Plant Physiol 69: 1459–1466

    Google Scholar 

  • Stark DM, Timmerman KP, Barry GF, Preiss J and Kishore GM (1992) Role of ADPglucose pyrophosphorylase in regulating starch levels in plant tissues. Science 258: 287–292

    Google Scholar 

  • Tetlow IJ, Davies EJ, Vardy KA, Bowsher CG, Burrell MM and Emes MJ (2003) Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform. J Exp Bot 54: 715–725

    Article  PubMed  Google Scholar 

  • Thorbjornsen T, Villand P, Kleczkowski LA and Olsen OA (1996a) A single gene encodes two different transcripts for the ADPglucose pyrophosphorylase small subunit from barley (Hordeum vulgare). Biochem J 313: 149–154

    PubMed  Google Scholar 

  • Thorbjornsen T, Villand P, Denyer K, Olsen OA and Smith A (1996b) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J 10: 243–250

    Article  Google Scholar 

  • Tiessen A, Hendriks JH, Stitt M, Branscheid A, Gibon Y, Farre EM and Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14: 2191–2213

    Article  PubMed  Google Scholar 

  • Van den Koornhuyse N, Libessart N, Delrue B, Zabawinski C, Decq A, Iglesias A, Carton A, Preiss J and Ball S (1996) Control of starch composition and structure supply in the monocellular alga Chlamydomonas reinhardtii. J Biol Chem 271: 16281–16287

    Article  PubMed  Google Scholar 

  • Van der Leij FR, Visser RFG, Ponstein AS, Jacobsen E and Feenstra WJ (1991) Sequence or the structural gene for the granule-bound starch synthase of potato (Solanum tuberosum L.) and evidence of a single point deletion in the amf allele. Mol Gen Genetics 228: 1279–1284

    Google Scholar 

  • Villand P, Olsen OA and Kleczkowski LA (1993) Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol 23: 1279–1284

    Article  PubMed  Google Scholar 

  • Visser RFG, Somhorst I, Kuipers GJ, Ruys NJ, Feenstra WJ and Jacobsen E (1991) Inhibition of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225: 289–296

    Article  PubMed  Google Scholar 

  • Weber H, Heim U, Borisjuk L and Wobus U (1995) Cell-type specific, coordinate expression of two ADPglucose pyrophosphorylase genes in relation to starch biosynthesis during seed development in Vicia faba L. Planta 195: 352–361

    Article  PubMed  Google Scholar 

  • Wolosiuk RA, Ballicora MA and Hagelin K (1993) The reductive pentose phosphate cycle for photosynthetic CO2 assimilation: enzyme modulation. FASEB J 7: 622–637

    PubMed  Google Scholar 

  • Wu MX and Preiss J (1998) The N-terminal region is important for the allosteric activation and inhibition of the Escherichia coli ADP-glucose pyrophosphorylase. Arch Biochem Biophys 358: 182–188

    Article  PubMed  Google Scholar 

  • Wu MX and Preiss J (2001) Truncated forms of the recombinant Escherichia coli ADP-glucose pyrophosphorylase: the importance of the N-terminal region for allosteric activation and inhibition. Arch Biochem Biophys 389: 159–165

    Article  PubMed  Google Scholar 

  • Zeiger E, Talbott LD, Frechilla S, Srivastava A and Zhu J (2002) The guard cell chloroplast: a perspective for the twenty-first century. New Phytol 153: 415–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Preiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballicora, M.A., Iglesias, A.A. & Preiss, J. ADP-Glucose Pyrophosphorylase: A Regulatory Enzyme for Plant Starch Synthesis. Photosynthesis Research 79, 1–24 (2004). https://doi.org/10.1023/B:PRES.0000011916.67519.58

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000011916.67519.58

Navigation