Skip to main content
Log in

The Pseudorabies Virus Serine/Threonine Kinase Us3 Contains Mitochondrial, Nuclear and Membrane Localization Signals

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The serine/threonine kinase encoded by the Us3 gene is conserved amongst all known alphaherpesviruses. Us3 has been reported to function in a variety of aspects of the virus lifecycle including protection of cells from virus-induced apoptosis, de-envelopment of enveloped virus particles from the perinuclear space and cell-to-cell spread of virus infection. In this report, we examined the sub-cellular localization of the pseudorabies virus (PRV) Us3 homolog. The PRV Us3 gene encodes two proteins termed Us3a and Us3b. Us3a differs from Us3b in that it contains 54 additional N-terminal amino acids. In transfected cells, Us3a localized predominantly to the plasma membrane whereas the Us3b protein localized predominantly to the nucleus. To explore the differences in the localization of the Us3a and Us3b proteins, we fused the amino-terminal 54 amino acids of Us3a to the amino-terminus of the enhanced green fluorescent protein (EGFP). Surprisingly, this fusion protein localized exclusively to mitochondria in transfected cells. Analysis of mutated Us3–EGFP fusion proteins in transfected cells revealed that the carboxy-terminal 101 amino acids of Us3a and Us3b comprises a membrane/vesicular localization domain, and that the N-terminal 102 amino acids of Us3b comprises a nuclear localization domain. We provide a model to rationalize the complex localization of Us3a and Us3b in transfected cells and hypothesize that the mitochondrial, nuclear and membrane localization motifs function in the reported anti-apoptotic, egress and cell-to-cell spread functions of Us3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Frame M.C., Purves F.C., McGeoch D.J., Marsden H.S., and Leader D.P. J Gen Virol 68, 2699–2704, 1987.

    Google Scholar 

  2. McGeoch D.J. and Davison A.J., Nucl Acids Res 14, 1765–1777, 1986.

    Google Scholar 

  3. Heineman T.C., Seidel K., and Cohen J.I., J Virol 70, 7312–7317, 1996.

    Google Scholar 

  4. Leopardi R., Van Sant C., and Roizman B., Proc Natl Acad Sci USA 94, 7891–7896, 1997.

    Google Scholar 

  5. Takashima Y., Tamura H., Xuan X., and Otsuka H., Virus Res 59, 23–34, 1999.

    Google Scholar 

  6. Wagenaar F., Pol J.M., Peeters B., Gielkens A.L., de Wind N., and Kimman T.G., J Gen Virol 76, 1851–1859, 1995.

    Google Scholar 

  7. Klupp B.G., Granzow H., and Mettenleiter T.C., J Gen Virol 82, 2363–2371, 2001.

    Google Scholar 

  8. Demmin G.L., Clase A.C., Randall J.A., Enquist L.W., and Banfield B.W., J Virol 75, 10856–10869, 2001.

    Google Scholar 

  9. Mettenleiter T.C., Vet Res 31, 99–115, 2000.

    Google Scholar 

  10. Rixon F.J. and McGeoch D.J., Nucl Acids Res 13, 953–973, 1985.

    Google Scholar 

  11. van Zijl M., van der Gulden H., de Wind N., Gielkens A., and Berns A., J Gen Virol 71, 1747–1755, 1990.

    Google Scholar 

  12. Zhang G. Stevens R., and Leader D.P., J Gen Virol 71, 1757–1765, 1990.

    Google Scholar 

  13. Lyman M.G., Demmin G.L., and Banfield B.W., J Virol 77, 1403–1414, 2003.

    Google Scholar 

  14. Schatz G., J Biol Chem 271, 31763–31766, 1996.

    Google Scholar 

  15. Kimman T.G., de Wind N., Oei-Lie N., Pol J. M., Berns A.J., and Gielkens A.L., J Gen Virol 73, 243–251, 1992.

    Google Scholar 

  16. Kimman T.G., De Wind N., De Bruin T., de Visser Y., and Voermans, J., Virology 205, 511–518, 1994.

    Google Scholar 

  17. Longnecker R. and Roizman B., Science 236, 573–576, 1987.

    Google Scholar 

  18. Nishiyama Y., Yamada Y., Kurachi R., and Daikoku T., Virology 190, 256–268, 1992.

    Google Scholar 

  19. Meignier B., Longnecker R., Mavromara-Nazos P., Sears A. E., and Roizman B., Virology 162, 251–254, 1988.

    Google Scholar 

  20. Corbett A.H. and Silver P.A., Microbiol Mol Biol Rev 61, 193–211, 1997.

    Google Scholar 

  21. Macara I.G., Microbiol Mol Biol Rev 65, 570–594, 2001.

    Google Scholar 

  22. van Leeuwen H., Elliott G., and O'Hare P., J Virol 76, 3471–3481, 2002.

    Google Scholar 

  23. van Minnebruggen G., Favoreel H.W., Jacobs L., and Nauwynck H.J., J Virol 77, 9074–9080, 2003.

    Google Scholar 

  24. Gavel Y. and von Heijne G., Protein Eng 4, 33–37, 1990.

    Google Scholar 

  25. Herrmann J.M. and Neupert W., Curr Opin Microbiol 3, 210–214, 2000.

    Google Scholar 

  26. Munger J., Chee, A.V., and Roizman, B., J Virol 75, 5491–5497, 2001.

    Google Scholar 

  27. Munger J. and Roizman B. Proc Natl Acad Sci USA 98, 10410–10415, 2001.

    Google Scholar 

  28. Jacotot E., Ferri K.F., El Hamel C., Brenner C., Druillennec S., Hoebeke J., Rustin P., Metivier D., Lenoir C., Geuskens M., Vieira H.L., Loeffler M., Belzacq A.S., Briand, J.P., Zamzami N., Edelman L., Xie Z.H., Reed J.C., Roques B.P., and Kroemer G., J Exp Med 193, 509–519, 2001.

    Google Scholar 

  29. Jacotot E., Ravagnan L., Loeffler M., Ferri K.F., Vieira H.L., Zamzami N., Costantini P., Druillennec S., Hoebeke J., Briand J.P., Irinopoulou T., Daugas E., Susin S.A., Cointe D., Xie Z.H., Reed J.C., Roques B.P., and Kroemer G., J Exp Med 191, 33–46, 2000.

    Google Scholar 

  30. Ciminale V., Zotti L., D'Agostino D.M., Ferro T., Casareto L., Franchini G., Bernardi P., and Chieco-Bianchi L., Oncogene 18, 4505–4514, 1999.

    Google Scholar 

  31. Goldmacher V.S., Bartle L.M., Skaletskaya A., Dionne C.A., Kedersha N.L., Vater C.A., Han J.W., Lutz R.J., Watanabe S., Cahir McFarland E.D., Kieff E.D., Mocarski E.S., and Chittenden T., Proc Natl Acad Sci USA 96, 12536–12541, 1999.

    Google Scholar 

  32. Takada S., Shirakata Y., Kaneniwa N., and Koike K., Oncogene 18, 6965–6973, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce W. Banfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calton, C.M., Randall, J.A., Adkins, M.W. et al. The Pseudorabies Virus Serine/Threonine Kinase Us3 Contains Mitochondrial, Nuclear and Membrane Localization Signals. Virus Genes 29, 131–145 (2004). https://doi.org/10.1023/B:VIRU.0000032796.27878.7f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VIRU.0000032796.27878.7f

Navigation