Skip to main content
Log in

His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors

  • Published:
Journal of Structural and Functional Genomics

Abstract

We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative effect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with a C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins.

abbreviations:

BSA – bovine serum albumin; DBD – DNA binding domain; DCW – dry cell weight; EDTA – ethylenediaminetetraacetic acid; GFP – green fluorescent protein; IMAC – immobilized metal ion affinity chromatography; IPTG – isopropyl-β-d-thiogalactopyranoside; LB – Luria-Bertani; MES – 2-(N-morpholino) ethane sulfonic acid; OD – optical density; ORF – open reading frame; PCR – polymerase chain reaction; SDS-PAGE – sodium dodecyl sulfate polyacrylamide gel electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D., Rattenbury, J., Anand, V., Mattatall, N.R. and Hill, B.C. (2004) Protein Expr. Purif. 33, 57–65.

    Google Scholar 

  • Bell, C.E. and Lewis, M. (2000) Nat. Struct. Biol. 7, 209–214.

    Google Scholar 

  • Bradford, M.M. (1976) Anal. Biochem. 72, 248–254.

    Google Scholar 

  • Braun, P., Hu, Y., Shen, B., Halleck, A., Koudinya, M., Harlow, E. and LaBaer, J. (2002) Proc. Natl. Acad. Sci. USA 99, 2654–2659.

    Google Scholar 

  • Busso, D., Kim, R. and Kim, S.-H. (2003) J. Biochem. Biophys. Methods 55, 233–240.

    Google Scholar 

  • Friedman, A.M., Fischmann, T.O. and Steitz, T.A. (1995) Science 268, 1721–1727.

    Google Scholar 

  • Fu, D. And Maloney P.C. (1997) J. Biol. Chem. 272, 2129–2135.

    Google Scholar 

  • Hammarström, M., Hellgren, N., van den Berg, S., Berglund, H. and Härd, T. (2002) Protein Sci. 11, 313–321.

    Google Scholar 

  • Hamosh, A., Scott., A.F., Amberger, J., Valle, D. and McKusick, V.A. (2000) Hum. Mutat. 15, 57–61.

    Google Scholar 

  • Hansson, H., Okoh, M.P., Smith, C.I.E., Vihinen, M. and Härd, T. (2001) FEBS Lett. 489, 67–70.

    Google Scholar 

  • Huth, J.R., Bewley, C.A., Jackson, B.M., Hinnebusch, A.G., Clore, G.M. and Gronenborn, A.M. (1997) Protein Sci. 6, 2359–2364.

    Google Scholar 

  • Kapust, R.B. and Waugh, D.S. (1999) Protein Sci. 8, 1668–1674.

    Google Scholar 

  • Kohli, B.M. and Ostermeier, C. (2003) Protein Expr. Purif. 28, 362–367.

    Google Scholar 

  • Mohanty, A.K. and Wiener, M.C. (2004) Protein Expr. Purif. 33, 311–325.

    Google Scholar 

  • Neri, D., Billeter, M. and Wüthrich, K. (1992) J. Mol. Biol. 223, 743–767.

    Google Scholar 

  • Nilsson, B., Moks, T., Jansson, B., Abrahmsén, L., Elmblad, A., Holmgren, E., Henrichson, C., Jones, A.T. and Uhlén, M. (1987) Protein Eng. 1, 107–113.

    Google Scholar 

  • Oxenoid, K., Kim, H.J., Jacob, J., Sönnichsen, F.D. and Sanders, C.R. (2004) J. Am. Chem. Soc. 126, 5048–5049.

    Google Scholar 

  • Pryor, K.D. and Leiting, B. (1997) Protein Expr. Purif. 10, 309–319.

    Google Scholar 

  • Routzahn, K.M. and Waugh, D.S. (2002) J. Struct. Funct. Genomics 2, 83–92.

    Google Scholar 

  • Shih, Y.-P., Kung, W.-M., Chen, J.-C., Yeh, C.-H., Wang, A.H.-J. and Wang, T.-F. (2002) Protein Sci. 11, 1724–1719.

    Google Scholar 

  • Staunton, D., Owen, J. and Campbell, I. (2003) Acc. Chem. Res. 36, 207–214.

    Google Scholar 

  • Tabor, S. and Richardson, C.C. (1985) Proc. Natl. Acad. Sci. USA 82, 2074–1078.

    Google Scholar 

  • Thaw, P., Baxter, N. J., Hounslow, A. M., Price, C., Waltho, J. P. and Craven, C. J. (2001) Nat. Struct. Biol. 8, 701–704.

    Google Scholar 

  • Woestenenk, E.A., Hammarström, M., Härd, T. and Berglund, H. (2003) Anal. Biochem. 318, 71–79.

    Google Scholar 

  • Yee, A., Pardee, K., Christendat, D., Savchenko, A., Edwards, A.M. and Arrowsmith, C. (2003) Acc. Chem. Res. 36, 183–189.

    Google Scholar 

  • Zhang, G., Gurtu, V. and Kain, S.R. (1996) Biochem. Biophys. Res. Commun. 227, 707–711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Berglund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woestenenk, E.A., Hammarström, M., van den Berg, S. et al. His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors. J Struct Func Genom 5, 217–229 (2004). https://doi.org/10.1023/B:jsfg.0000031965.37625.0e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:jsfg.0000031965.37625.0e

Navigation