Skip to main content
Articles

Dissociable Components of Error Processing

On the Functional Significance of the Pe Vis-à-vis the ERN/Ne

Published Online:https://doi.org/10.1027/0269-8803.19.4.319

Abstract: We conducted a literature review to examine the functional significance of the error positivity (Pe), an error-related electrophysiological brain potential often observed in combination with the error negativity (Ne). The review revealed many dissociations between documented effects on the Ne and Pe, suggesting that these components reflect different aspects of error processing. We found little support for the proposed hypotheses that the Pe is associated with the affective processing of errors or with posterror behavioral adaptation. Some support was found for the hypothesis that the Pe reflects conscious recognition of an error. Finally, we discuss the notion that the Pe may reflect a P3b associated with the motivational significance of the error. We conclude that more research is needed to test predictions of the various Pe hypotheses, and that more rigorous investigation of the neural generators of the Pe may contribute to a better understanding of the neurocognitive processes involved in error monitoring.

References

  • Alain, C. , McNeely, H.E. , He, Y. , Christensen, B.K. , West, R. (2002). Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia. Cerebral Cortex, 12, 840– 846 First citation in articleCrossrefGoogle Scholar

  • Aouizerate, B. , Guehl, D. , Cuny, E. , Rougier, A. , Bioulac, B. , Tignol, J. , Burbaud, P. (2004). Pathophysiology of obsessive-compulsive disorder: A necessary link between phenomenology, neuropsychology, imagery, and physiology. Progress in Neurobiology, 72, 195– 221 First citation in articleCrossrefGoogle Scholar

  • Band, G.P.H. , Kok, A. (2000). Age effects on response monitoring in a mental-rotation task. Biological Psychology, 51, 201– 221 First citation in articleCrossrefGoogle Scholar

  • Bates, A.T. , Liddle, P.F. , Kiehl, K.A. , Ngan, E.T.C. (2004). State dependent changes in error monitoring in schizophrenia. Journal of Psychiatric Research, 38, 347– 356 First citation in articleCrossrefGoogle Scholar

  • Botvinick, M.M. , Braver, T.S. , Barch, D.M. , Carter, C.S. , Cohen, J.D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624– 652 First citation in articleCrossrefGoogle Scholar

  • Brown, J.W. , Braver, T.S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118– 1121 First citation in articleCrossrefGoogle Scholar

  • Bush, G. , Luu, P. , Posner, M.I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215– 222 First citation in articleCrossrefGoogle Scholar

  • Davies, P.L. , Segalowitz, S.J. , Gavin, W.J. (2004). Development of response-monitoring ERPs in 7- to 25-year-olds. Developmental Neuropsychology, 25, 355– 376 First citation in articleCrossrefGoogle Scholar

  • de Bruijn, E.R.A. , Hulstijn, W. , Verkes, R.J. , Ruigt, G.S.F. , Sabbe, B.G.C. (2004). Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology, 177, 151– 160 First citation in articleCrossrefGoogle Scholar

  • Donchin, E. , Coles, M.G.H. (1988). Is the P300 component a manifestation of context updating?. Behavioral and Brain Sciences, 11, 357– 374 First citation in articleCrossrefGoogle Scholar

  • Dywan, J. , Mathewson, K.J. , Segalowitz, S.J. (2004). Error-related ERP components and source monitoring in older and younger adults. In M. Ullsperger, & M. Falkenstein (Eds.),Errors, conflicts, and the brain. Current opinions on performance monitoring (MPI Special Issue in Human Cognitive and Brain Sciences 1, pp. 184-192). Leipzig: Max-Planck-Institut für Kognitions- und Neurowissenschaften First citation in articleGoogle Scholar

  • Ehlis, A.-C. , Herrmann, M.J. , Bernhard, A. , Fallgatter, A.J. (2005). Monitoring of internal and external error signals. Journal of Psychophysiology, this issue, First citation in articleGoogle Scholar

  • Elton, M. , Spaan, M. , Ridderinkhof, K.R. (2004). Why do we produce errors of commission? An ERP study of stimulus deviance detection and error monitoring in a choice go/no-go task. European Journal of Neuroscience, 20, 1960– 1968 First citation in articleCrossrefGoogle Scholar

  • Endrass, T. , Franke, C. , Kathmann, N. (2005). Error awareness in a saccade countermanding task. Journal of Psychophysiology, this issue, First citation in articleGoogle Scholar

  • Falkenstein, M. (2004). ERP correlates of erroneous performance. In M. Ullsperger & M. Falkenstein (Eds.),Errors, conflicts, and the brain. Current opinions on performance monitoring (MPI Special Issue in Human Cognitive and Brain Sciences 1, pp. 5-14). Leipzig: Max-Planck-Institut für Kognitions- und Neurowissenschaften First citation in articleGoogle Scholar

  • Falkenstein, M. , Hohnsbein, J. , Hoormann, J. (1996). Differential processing of motor errors. In C. Ogura, Y. Koga, & M. Shimokochi (Eds.),Recent advances in event-related brain potential research(EEG Supplement 45, pp. 579-585). Amsterdam: Elsevier First citation in articleGoogle Scholar

  • Falkenstein, M. , Hohnsbein, J. , Hoormann, J. , Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447– 455 First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M. , Hoormann, J. , Christ, S. , Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87– 107 First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M. , Hoormann, J. , Hohnsbein, J. (1998). EKP-Korrelate der Fehlerverarbeitung in Abhängigkeit von Alter und Ermüdung. In M. Falkenstein, J. Hohnsbein, & P. Ullsperger (Eds.), Cognitive changes due to aging and fatigue as revealed in the electrical brain activity (pp. 57-66). Berlin: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin First citation in articleGoogle Scholar

  • Falkenstein, M. , Willemssen, R. , Hohnsbein, J. , Hielscher, H. (2005). Error processing in Parkinson's disease: The error positivity (Pe). Journal of Psychophysiology, this issue, First citation in articleGoogle Scholar

  • Fellows, L.K. , Farah, M.J. (2005). Is anterior cingulate cortex necessary for cognitive control?. Brain, 128, 788– 796 First citation in articleCrossrefGoogle Scholar

  • Gehring, W.J. , Goss, B. , Coles, M.G.H. , Meyer, D.E. , Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385– 390 First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , McDonald, N. , Simons, R.F. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and posterror compensatory behavior. Psychophysiology, 40, 895– 903 First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , McDonald, N. , Simons, R.F. (2004). Error-related psychophysiology and negative affect. Brain and Cognition, 56, 189– 197 First citation in articleCrossrefGoogle Scholar

  • Herrmann, M.J. , Römmler, J. , Ehlis, A.-C. , Heidrich, A. , Fallgatter, A.J. (2004). Source localization (LORETA) of the error- related-negativity (ERN/Ne) and positivity (Pe). Cognitive Brain Research, 20, 294– 299 First citation in articleCrossrefGoogle Scholar

  • Hester, R. , Foxe, J.J. , Molholm, S. , Shpaner, M. , Garavan, H. (2005). Neural mechanisms involved in error processing: A comparison of errors made with and without awareness. NeuroImage, 27, 602– 608 First citation in articleCrossrefGoogle Scholar

  • Holroyd, C.B. , Coles, M.G.H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679– 709 First citation in articleCrossrefGoogle Scholar

  • Holroyd, C.B. , Nieuwenhuis, S. , Mars, R.B. , Coles, M.G.H. (2004). Anterior cingulate cortex, selection for action, and error processing. In M.I. Posner (Ed.), Cognitive neuroscience of attention (pp. 219-231). New York: Guilford Press First citation in articleGoogle Scholar

  • Kaiser, J. , Barker, R. , Haenschel, C. , Baldeweg, T. , Gruzelier, J.H. (1997). Hypnosis and event-related potential correlates of error processing in a Stroop-type paradigm: A test of the frontal hypothesis. International Journal of Psychophysiology, 27, 215– 222 First citation in articleGoogle Scholar

  • Ladouceur, C.D. , Dahl, R.E. , Carter, C.S. (2004). ERP correlates of action monitoring in adolescence. Annals of the New York Academy of Sciences, 1021, 329– 336 First citation in articleCrossrefGoogle Scholar

  • Laruelle, M. , Abi-Dargham, A. (1999). Dopamine as the wind of the psychotic fire: New evidence from brain imaging studies. Journal of Psychopharmacology, 13, 358– 371 First citation in articleCrossrefGoogle Scholar

  • Leuthold, H. , Sommer, W. (1999). ERP correlates of error processing in spatial S-R compatibility tasks. Clinical Neurophysiology, 110, 342– 357 First citation in articleCrossrefGoogle Scholar

  • Luu, P. , Collins, P. , Tucker, D.M. (2000). Mood, personality, and self-monitoring: Negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. Journal of Experimental Psychology: General, 129, 43– 60 First citation in articleCrossrefGoogle Scholar

  • Maltby, N. , Tolin, D.F. , Worhunsky, P. , O'Keefe, T.M. , Kiehl, K.A. (2005). Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: An event-related fMRI study. NeuroImage, 24, 495– 503 First citation in articleCrossrefGoogle Scholar

  • Mathalon, D.H. , Bennett, A. , Askari, N. , Gray, E.M. , Rosenbloom, M.J. , Ford, J.M. (2003). Response-monitoring dysfunction in aging and Alzheimer's disease: An event-related potential study. Neurobiology of Aging, 24, 675– 685 First citation in articleCrossrefGoogle Scholar

  • Mathalon, D.H. , Fedor, M. , Faustman, W.O. , Gray, M. , Askari, N. , Ford, J.M. (2002). Response-monitoring dysfunction in schizophrenia: An event-related brain potential study. Journal of Abnormal Psychology, 111, 22– 41 First citation in articleCrossrefGoogle Scholar

  • Mathewson, K.J. , Dywan, J. , Segalowitz, S.J. (2005). Brain bases of error-related ERPs as influenced by age and task. Biological Psychology, First citation in articleGoogle Scholar

  • Nieuwenhuis, S. , Aston-Jones, G. , Cohen, J.D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131, 510– 532 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S. , Holroyd, C.B. , Mol, N. , Coles, M.G.H. (2004). Reinforcement-related brain potentials from medial frontal cortex: Origins and functional significance. Neuroscience & Biobehavioral Reviews, 28, 441– 448 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S. , Ridderinkhof, K.R. , Blom, J. , Band, G.P.H. , Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38, 752– 760 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S. , Ridderinkhof, K.R. , Talsma, D. , Coles, M.G. , Holroyd, C.B. , Kok, A. , van der Molen, M.W. (2002). A computational account of altered error processing in older age: Dopamine and the error-related negativity. Cognitive, Affective and Behavioral Neuroscience, 2, 19– 36 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S. , Yeung, N. , van den Wildenberg, W.P.M. , Ridderinkhof, K.R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, and Behavioral Neuroscience, 3, 17– 26 First citation in articleCrossrefGoogle Scholar

  • Overtoom, C.C.E. , Kenemans, J.L. , Verbaten, M.N. , Kemner, C. , van der Molen, M.W. , van Engeland, H. , Buitelaar, J.K. , Koelega, H.S. (2002). Inhibition in children with attention-deficit/hyperactivity disorder: A psychophysiological study of the stop task. Biological Psychiatry, 51, 668– 676 First citation in articleCrossrefGoogle Scholar

  • Picton, T.W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456– 479 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (1997). EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology, 104, 244– 256 First citation in articleCrossrefGoogle Scholar

  • Rabbitt, P. (2002). Consciousness is slower than you think. The Quarterly Journal of Experimental Psychology: Section A, 55, 1081– 1092 First citation in articleCrossrefGoogle Scholar

  • Ramautar, J.R. , Kok, A. , Ridderinkhof, K.R. (2004). Effects of stop-signal probability in the stop-signal paradigm: The N2/P3 complex further validated. Brain and Cognition, 56, 234– 252 First citation in articleCrossrefGoogle Scholar

  • Ridderinkhof, K.R. , de Vlugt, Y. , Bramlage, A. , Spaan, M. , Elton, M. , Snel, J. , Band, G.P.H. (2002). Alcohol consumption impairs the detection of performance errors by mediofrontal cortex. Science, 298, 2209– 2211 First citation in articleCrossrefGoogle Scholar

  • Ridderinkhof, K.R. , Ullsperger, M. , Crone, E.A. , Nieuwenhuis, S. (2004). The role of medial frontal cortex in cognitive control. Science, 306, 443– 447 First citation in articleCrossrefGoogle Scholar

  • Ridderinkhof, K.R. , van der Molen, M.W. (1995). A psychophysiological analysis of developmental differences in the ability to resist interference. Child Development, 66, 1040– 1056 First citation in articleCrossrefGoogle Scholar

  • Rinne, J.O. , Shalberg, N. , Ruottinen, H. , Nagren, K. , Lehikoinen, P. (1998). Striatal uptake of the dopamine reuptake ligand [11C]β-CFT is reduced in Alzheimer's disease assessed by positron emission tomography. Neurology, 50, 152– 156 First citation in articleCrossrefGoogle Scholar

  • Rollnik, J.D. , Schröder, C. , Rodríguez-Fornells, A. , Kurzbuch, A.R. , Däuper, J. , Möller, J. , Münte, T.F. (2004). Functional lesions and human action monitoring: Combining repetitive transcranial magnetic stimulation and event-related brain potentials. Clinical Neurophysiology, 115, 145– 153 First citation in articleCrossrefGoogle Scholar

  • Rösler, F. (1983). Endogenous ER “Ps” and cognition: Probes, prospects, and pitfalls in matching pieces of the mind-body puzzle. In A.W.K. Gaillard & W. Ritter (Eds.),Tutorials in event-related potential research: Endogenous components (pp. 9-35). Amsterdam: Elsevier First citation in articleGoogle Scholar

  • Ruchsow, M. , Grön, G. , Reuter, K. , Spitzer, M. , Hermle, L. , Kiefer, M. (2005). Error-related brain activity in patients with obsessive-compulsive disorder and healthy controls. Journal of Psychophysiology, this issue, First citation in articleGoogle Scholar

  • Rushworth, M.F.S. , Walton, M.E. , Kennerley, S.W. , Bannerman, D.M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8, 410– 417 First citation in articleCrossrefGoogle Scholar

  • Santesso, D.L. , Segalowitz, S.J. , Schmidt, L.A. (in press). ERP correlates of error monitoring in 10-year-olds are related to socialization. Biological Psychology, First citation in articleGoogle Scholar

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241– 263 First citation in articleCrossrefGoogle Scholar

  • Soltani, M. , Knight, R.T. (2000). Neural origins of the P300. Critical Reviews in Neurobiology, 14, 199– 224 First citation in articleCrossrefGoogle Scholar

  • Stemmer, B. , Segalowitz, S.J. , Witzke, W. , Schönle, P.W. (2003). Error detection in patients with lesions to the medial prefrontal cortex: An ERP study. Neuropsychologia, 42, 118– 130 First citation in articleCrossrefGoogle Scholar

  • Stemmer, B. , Witzke, W. , Schönle, P.W. (2001). Losing the error-related negativity in the EEG of human subjects: An indicator for willed action. Neuroscience Letters, 308, 60– 62 First citation in articleCrossrefGoogle Scholar

  • Tieges, Z. , Ridderinkhof, K.R. , Snel, J. , Kok, A. (2004). Caffeine strengthens action monitoring: Evidence from the error-related negativity. Cognitive Brain Research, 21, 87– 93 First citation in articleCrossrefGoogle Scholar

  • Ullsperger, M. , Szymanowski, F. (2004). ERP correlates of error relevance. In M. Ullsperger & M. Falkenstein (Eds.),Errors, conflicts, and the brain. Current opinions on performance monitoring (MPI Special Issue in Human Cognitive and Brain Sciences 1, pp. 171-177). Leipzig: Max-Planck-Institut für Kognitions- und Neurowissenschaften First citation in articleGoogle Scholar

  • Ullsperger, M. , von Cramon, D.Y. (2005). Error processing requires intact frontostriatal circuits. Journal of Psychophysiology, this issue, First citation in articleGoogle Scholar

  • Ullsperger, M. , von Cramon, D.Y. , Müller, N.G. (2002). Interactions of focal cortical lesions with error processing: Evidence from event-related brain potentials. Neuropsychology, 16, 548– 561 First citation in articleCrossrefGoogle Scholar

  • van Boxtel, G.J.M. , van der Molen, M.W. , Jennings, J.R. (2005). Differential involvement of the anterior cingulate cortex in performance monitoring during a stop-signal task. Journal of Psychophysiology, 19, 1– 10 First citation in articleLinkGoogle Scholar

  • van Veen, V. , Carter, C.S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14, 593– 602 First citation in articleCrossrefGoogle Scholar

  • Vidal, F. , Burle, B. , Bonnet, M. , Grapperon, J. , Hasbroucq, T. (2003). Error negativity on correct trials: A reexamination of available data. Biological Psychology, 64, 265– 282 First citation in articleCrossrefGoogle Scholar

  • Weinberger, D.R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660– 669 First citation in articleCrossrefGoogle Scholar

  • Winterer, G. , Weinberger, D.R. (2004). Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends in Neurosciences, 27, 683– 690 First citation in articleCrossrefGoogle Scholar

  • Yeung, N. , Cohen, J.D. , Botvinick, M.M. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931– 959 First citation in articleCrossrefGoogle Scholar