Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal and spatial control of cyclin B1 destruction in metaphase

Abstract

The proteolysis of key regulatory proteins is thought to control progress through mitosis. Here we analyse cyclin B1 degradation in real time and find that it begins as soon as the last chromosome aligns on the metaphase plate, just after the spindle-assembly checkpoint is inactivated. At this point, cyclin B1 staining disappears from the spindle poles and from the chromosomes. Cyclin B1 destruction can subsequently be inactivated throughout metaphase if the spindle checkpoint is reimposed, and this correlates with the reappearance of cyclin B1 on the spindle poles and the chromosomes. These results provide a temporal and spatial link between the spindle-assembly checkpoint and ubiquitin-mediated proteolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Real time visualization and measurement of cyclin B1 proteolysis.
Figure 2: Cyclin B1 destruction begins when chromosomes align on the metaphase plate.
Figure 3: Taxol can turn off cyclin B1 destruction once it has started.
Figure 4: The redistribution of cyclin B1–GFP is not directly due to proteolysis.

Similar content being viewed by others

References

  1. King, R. W., Deshaies, R. J., Peters, J. M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Funabiki, H. et al. Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381, 438– 441 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen Fix, O., Peters, J. M., Kirschner, M. W. & Koshland, D. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081–3093 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  4. Ciosk, R. et al. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Holloway, S. L., Glotzer, M., King, R. W., & Murray, A. W. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73, 1393–1402 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Surana, U. et al. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12, 1969–1978 ( 1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. King, R. W. et al. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Sudakin, V. et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis . Mol. Biol. Cell 6, 185– 197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamano, H., Tsurumi, C., Gannon, J. & Hunt, T. The role of the destruction box and its neighbouring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: defining the D-box receptor. EMBO J. 17, 5670–5678 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, X., Patterson, T. E. & Sazer, S. The Schizosaccharomyces pombe spindle checkpoint protein Mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 94, 7965 –7970 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M. & Benezra, R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA 94, 12431–12436 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871 –1883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279 , 1045–1047 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Pines, J. & Hunter, T. Human cyclins A and B are differentially located in the cell and undergo cell cycle dependent nuclear transport. J. Cell Biol. 115, 1–17 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Gallant, P. & Nigg, E. A. Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J. Cell Biol. 117, 213–224 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Girard, F., Fernandez, A. & Lamb, N. Delayed cyclin A and B1degradation in non-transformed mammalian cells. J. Cell Sci. 108, 2599– 2608 (1995).

    CAS  PubMed  Google Scholar 

  17. Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localisation is controlled by nuclear export. EMBO J. 17, 4127– 4138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toyoshima, F., Moriguchi, T., Wada, A., Fukuda, M. & Nishida, E. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J. 17, 2728–2735 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, J. et al. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 12, 2131–2143 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  21. Stewart, E., Kobayashi, H., Harrison, D. & Hunt, T. Destruction of Xenopus cyclins A and B2, but not B1, requires binding to p34cdc2. EMBO J. 13, 584– 594 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. King, R. W., Glotzer, M. & Kirschner, M. W. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell 7, 1343–1357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hunt, T., Luca, F. C. & Ruderman, J. V. The requirements for protein synthesis and degradation, and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J. Cell Biol. 116, 707–724 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Minshull, J., Golsteyn, R., Hill, C. S. & Hunt, T. The A- and B-type cyclin-associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 9 , 2865–2875 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Waters, J. C., Chen, R. H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181– 1191 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol. 141, 1193–1205 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gorbsky, G. J. & Ricketts, W. A. Differential expression of a phosphoepitope at the kinetochores of moving chromosomes. J. Cell Biol. 122, 1311–1321 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, J.-Y. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gorbsky, G. J. Cell cycle checkpoints: arresting progress in mitosis. BioEssays 19, 193–197 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  32. Elledge, S. J. Mitotic arrest: Mad2 prevents sleepy from waking up the APC. Science 279, 999–1000 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  33. Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Jorgensen, P. M., Brundell, E., Starborg, M. & Hoog, C. A subunit of the anaphase-promoting complex is a centromere-associated protein in mammalian cells. Mol. Cell Biol. 18, 468–476 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint . Curr. Opin. Cell Biol. 8, 773– 780 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  37. Rieder, C. L. et al. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc. Natl Acad. Sci. USA 94, 5107– 5112 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721– 1724 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Pines, J. & Hunter, T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58, 833–846 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Krude, T., Jackman, M. R., Pines, J. N. & Laskey, R. A. Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system . Cell 87, 109–119 (1997).

    Article  Google Scholar 

  41. Shaw, S. L., Yeh, E., Bloom, K. & Salmon, E. D. Imaging green fluorescent protein fusion proteins in Saccharomyces cerevisiae. Curr. Biol. 7, 701–704 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  42. Karlsson, C. & Pines, J. in Cell Biology: A Laboratory Handbook Vol. 4 (ed. Celis, J.) 246–252 (Academic, San Diego, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank I. Hagan for suggesting the taxol experiment and for discussions, S. Geley and T. Hunt for the Xenopus CSF extract, J. Huang and J. Raff for unpublished observations, and M. Zernicka-Goetz, T. Kouzarides, and the members of our laboratory for support and discussions. We also thank W. Earnshaw and C. Rieder for their enthusiasm and support. P.C. was an 1851 Exhibition fellow and is supported by the Association for International Cancer Research. This work was supported by a programme grant from the Cancer Research Campaign and an MRC project grant.

Correspondence and requests for materials should be addressed to J.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon Pines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clute, P., Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1, 82–87 (1999). https://doi.org/10.1038/10049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing