Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Feature-based attention influences motion processing gain in macaque visual cortex

Abstract

Changes in neural responses based on spatial attention have been demonstrated in many areas of visual cortex1,2,3,4, indicating that the neural correlate of attention is an enhanced response to stimuli at an attended location and reduced responses to stimuli elsewhere. Here we demonstrate non-spatial, feature-based attentional modulation of visual motion processing, and show that attention increases the gain of direction-selective neurons in visual cortical area MT without narrowing the direction-tuning curves. These findings place important constraints on the neural mechanisms of attention and we propose to unify the effects of spatial location, direction of motion and other features of the attended stimuli in a ‘feature similarity gain model’ of attention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experiment 1: Effect of directing attention inside versus outside the receptive field on the directional tuning curve.
Figure 2: Experiment 2: Non-spatial effects of attention and the summing of spatial and featural attentional modulation.
Figure 3: Experiment 3: Effect of directing attention to one of two stimuli inside the receptive field.

References

  1. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    Article  CAS  Google Scholar 

  3. Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  5. Newsome, W. T., Wurtz, R. H., Dürsteler, M. R. & Mikami, A. Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J. Neurosci. 5, 825–840 (1985).

    Article  CAS  Google Scholar 

  6. Newsome, W. T. & Paré, E. B. Aselective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201–2211 (1988).

    Article  CAS  Google Scholar 

  7. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. Arelationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  Google Scholar 

  8. Snowden, R. J., Treue, S. & Andersen, R. A. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Exp. Brain Res. 88, 389–400 (1992).

    Article  CAS  Google Scholar 

  9. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  Google Scholar 

  10. Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and neuronal performance. Science 240, 338–340 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Lankheet, M. J. M. & Verstraten, F. A. J. Attentional modulation of adaptation to two-component transparent motion. Vision Res. 35, 1401–1412 (1995).

    Article  CAS  Google Scholar 

  12. Duncan, J. & Nimmo-Smith, I. Objects and attributes in divided attention: Surface and boundary systems. Percept. Psychophys. 58, 1076–1084 (1996).

    Article  CAS  Google Scholar 

  13. Valdes-Sosa, M., Bobes, M. A., Rodriguez, V. & Pinilla, T. Switching attention without shifting the spotlight: Object-based attentional modulation of brain potentials. J. Cogn. Neurosci. 10, 137–151 (1998).

    Article  CAS  Google Scholar 

  14. Reynolds, J. H. & Desimone, R. Attention and contrast have similar effects on competitive interactions in macaque area V4. Soc. Neurosci. Abstr. 23, 302 (1997).

    Google Scholar 

  15. Treue, S. & Martinez, J. C. Attentional modulation of direction-selective responses in MT/MST resembles the effect of reducing contrast of unattended stimuli. Soc. Neurosci. Abstr. 24, 1249 (1998).

    Google Scholar 

  16. O'Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A. & Savoy, R. L. Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18, 591–598 (1997).

    Article  CAS  Google Scholar 

  17. Beauchamp, M. S., Cox, R. W. & DeYoe, E. A. Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J. Neurophysiol. 78, 516–520 (1997).

    Article  CAS  Google Scholar 

  18. Motter, B. C. Neural correlates of attentive selection for color or luminance in extrastriate area V4. J.Neurosci. 14, 2178–2189 (1994).

    Article  CAS  Google Scholar 

  19. Chelazzi, L., Miller, E. K., Duncan, J. & Desimone, R. Aneural basis for visual search in inferior temporal cortex. Nature 363, 345–347 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Itti, L., Braun, J., Lee, D. K. & Koch, C. Attentional modulation of human pattern discrimination psychophysics reproduced by a quantitative model. Neural Information Processing Systems(in the press).

  21. McAdams, C. J. & Maunsell, J. H. R. Attention enhances neuronal responses without altering orientation selectivity in macaque area V4. Neurosci. Abstr. 22, 1197 (1996).

    Google Scholar 

  22. Martinez, J. & Treue, S. Attention does not sharpen direction-tuning curves in macaque monkey MT/MST neurons. Soc. Neurosci. Abstr. 24, 649 (1998).

    CAS  Google Scholar 

  23. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  24. Reynolds, J. H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1730–1753 (1999).

    Article  Google Scholar 

  25. Treue, S. & Maunsell, J. H. R. Effects of attention on the processing of motion in macaque visual cortical areas MT and MST. J. Neurosci.submitted.

Download references

Acknowledgements

This work was supported by the MWF-Württemberg. J.C.M. is a fellow of the Graduiertenkolleg Neurobiologie, Tübingen.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treue, S., Trujillo, J. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999). https://doi.org/10.1038/21176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21176

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing