Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans

Abstract

In the nematode Caenorhabditis elegans six GABAergic motor neurons, known as DDs1,2, remodel their patterns of synaptic connectivity during larval development3. DD remodelling involves a complete reversal of the direction of information flow within nerve processes without marked changes in process morphology. We used a marker localized in vivo to DD presynaptic zones to analyse how the timing of DD remodelling is controlled. In wild-type animals, DDs remodel their synaptic outputs within a 3–5-hour period at the end of the first larval stage. We show that the heterochronic gene lin-14, which controls the timing of stage-specific cell lineages4,5, regulates the timing of DD synaptic output remodelling. In lin-14 loss-of-function mutants, DDs remodel precociously. The degree of precocious remodelling is correlated with the level of lin-14 activity. Expression of lin-14(+) in the DDs of lin-14-null mutants rescues the precocious remodelling, indicating that lin-14 can act cell-autonomously. Consistent with this hypothesis, LIN-14 protein levels decrease in the DDs before remodelling. Our observations reveal a role of heterochronic genes in non-dividing cells, and provide an example of cell-autonomous respecification of neuronal connectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Punc-25-SNB–GFP expression reflects the pattern of DD synaptic connectivity.
Figure 2: Timing of DD synaptic remodelling.
Figure 3: Effects of lin-14 on DD synaptic remodelling.
Figure 4: Changes in LIN-14 protein levels within the DDs precede the onset of synaptic remodelling.

Similar content being viewed by others

References

  1. McIntire, S. L., Jorgensen, E., Kaplan, J. & Horvitz, H. R. The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–341 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  ADS  CAS  Google Scholar 

  3. White, J. G., Albertson, D. G. & Anness, M. A. R. Connectivity changes in a class of motorneurons during the development of a nematode. Nature 271, 764–766 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ambros, V. & Horvitz, H. R. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev. 1, 398–414 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Harris, W. A. Neurometamorphosis. J. Neurobiol. 21, 953–957 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Truman, J. Metamorphosis of the central nervous system of Drosophila. J. Neurobiol. 21, 1072–1084 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Levine, R. B., Morton, D. B. & Restifo, L. L. Remodeling of the insect nervous system. Curr. Opin. Neurobiol. 5, 28–35 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Alley, K. E. Retrofitting larval neuromuscular circuits in the metamorphosing frog. J. Neurobiol. 21, 1092–1107 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Dotti, C. G. & Banker, G. A. Experimentally induced alterations in the polarity of developing neurons. Nature 330, 254–256 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B. & Wei, L. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J. Neurosci. 18, 70–80 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jorgensen, E. M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA 91, 12501–12504 (1994).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Ambros, V. & Moss, E. G. Heterochronic genes and the temporal control of C. elegans development. Trends Genet. 10, 123–127 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Ruvkun, G. & Giusto, J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338, 313–319 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Euling, S. & Ambros, V. Heterochronic genes control cell cycle progress and developmental competence of C. elegans vulval precursor cells. Cell 84, 667–676 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Wightman, B., Bürglin, T. R., Gatto, J., Arasu, P. & Ruvkun, G. Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 5, 1813–1824 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Wightman, B., Ha, I. & Ruvkun, G. Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Purves, D. & Hadley, R. D. Changes in the dendritic branching of adult mammalian neurones revealed by repeated imaging in situ. Nature 315, 404–406 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Purves, D. & Lichtman, J. W. Elimination of synapses in the developing nervous system. Science 210, 153–157 (1994).

    Article  ADS  Google Scholar 

  23. Wigston, D. J. Repeated in vivo visualization of neuromuscular junctions in adult mouse lateral gastrocnemius. J. Neurosci. 10, 1753–1761 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, L., Folsom, D. B. & Ko, C.-P. The remodelling of synaptic extracellular matrix and its dynamic relationship with nerve terminals at living frog neuromuscular junctions. J. Neurosci. 11, 2920–2930 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72, 77–98 (1993).

    Article  PubMed  Google Scholar 

  27. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Clark, S. G., Lu, X-W. & Horvitz, H. R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Naito, M., Kohara, Y. & Kurosawa, Y. Identification of a homeobox-containing gene located between lin-45 and unc-24 on chromosome IV in the nematode Caenorhabditis elegans. Nucleic Acids Res. 20, 2967–2969 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Nonet for the SNB–GFP DNA; V. Ambros and Y. Hong for lin-14 alleles and lin-14(+) genomic DNA; G. Ruvkun, B. Reinhart and F. Slack for anti-LIN-14 antibodies; and A. Chisholm, A. Zahler, J. Sisson, V. Ambros, M. Nonet, M. Zhen, I. Chin-Sang and members of the Jin and Chisholm labs for helpful discussions and comments. Some strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH Center for Research Resources. S.J.H. was supported by a Predoctoral GAANN fellowship. Y.J. is an Alfred P. Sloan Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishi Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallam, S., Jin, Y. lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature 395, 78–82 (1998). https://doi.org/10.1038/25757

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25757

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing