Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tubulin microheterogeneity increases with rat brain maturation

Abstract

MICROTUBULES are present in all eukaryotic cells and have been found to have a variety of structural and dynamic roles in cell shape, division, motility, transport and secretion1. In nervous tissue neurite outgrowth and axoplasmic transport are also thought to depend on microtubule integrity2. The micro-tubule subunit protein, tubulin, is a heterodimer composed of two polypeptides α and β (refs 3,4). The α and β subunits show microheterogeneity and both have been resolved into two or three components5–8. The question therefore arises as to whether changes occur in the relative proportions of the multiple forms of tubulin upon assumption of different roles within the nerve cell. We show here that cytoplasmic rat brain tubulin, as resolved by isoelectric focusing, is highly heterogeneous. Moreover, tubulin microheterogeneity seems to be developmentally determined, increasing from seven to nine distinct components during early postnatal rat brain maturation. However, extensive tubulin microheterogeneity is prominent in the brain, as tubulin from other organs is less heterogeneous.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olmsted, J. B. & Borisy, G. G. A. Rev. Biochem. 42, 507–540 (1973).

    Article  CAS  Google Scholar 

  2. Shelanski, M. L. & Feit, H. in The Structure and Function of the Nervous Tissue, Vol. 6 (ed. Bourne, G. H.) 47–80 (Academic, New York, 1972).

    Google Scholar 

  3. Bryan, J. & Wilson, L. Proc. natn. Acad. Sci. U.S.A. 68, 1762–1766 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Luduena, R., Wilson, L. & Shooter, E. M. J. Cell Biol. 63, 202a (1974).

    Google Scholar 

  5. Feit, H., Slusarek, L. & Shelanski, M. L. Proc. natn. Acad. Sci. U.S.A. 68, 2028–2031 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Witman, G. B., Carlson, K. & Rosenbaum, J. L. J. Cell. Biol. 54, 540–555 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feit, H. & Shelanski, M. L. Biochem. biophys. Res. Commun. 66, 920–927 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Bibring, T., Baxandall, J., Denslow, S. & Walker, B. J. Cell Biol. 69, 301–312 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. O'Farrell, P. H. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  10. Gozes, I. & Littauer, U. Z. in Proc. 6th Int. Soc. Neurochemistry (eds Sourkes, T. L. & Clausen, J.) 121 (Copenhagen, Denmark, 1977).

    Google Scholar 

  11. Raybin, D. & Flavin, M. Biochem. biophys. Res. Commun. 65, 1088–1095 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Fellous, A., Francon, J., Virion, A. & Nunez, J. FEBS Lett. 57, 5–8 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Fellous, A., Francon, J., Lennon, A. M. & Nunez, J. FEBS Lett. 64, 400–403 (1976).

    Article  CAS  PubMed  Google Scholar 

  14. Schmitt, H., Josephs, R. & Reisler, E. Nature 265, 653–655 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Eipper, B. A. Proc. natn. Acad. Sci. U.S.A. 69, 2283–2287 (1972).

    Article  ADS  CAS  Google Scholar 

  16. Shelanski, M. L., Gaskin, F. & Cantor, C. R. Proc. natn. Acad. Sci. U.S.A. 70, 765–768 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Maizel, J. V., Jr in Methods in Virology, Vol. 5 (eds Maramorosch, K. & Koprowski, H.) 179–246 (Academic, New York, 1971).

    Google Scholar 

  18. Gozes, I., Schmitt, H. & Littauer, U. Z. Proc. natn. Acad. Sci. U.S.A. 72, 701–705 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Cleveland, D. W., Fischer, S. G., Kirschner, M. W. & Laemmli, U. K. J. biol. Chem. 252, 1102–1106 (1977).

    CAS  PubMed  Google Scholar 

  20. Klee, W. A. & Nirenberg, M. Proc. natn. Acad. Sci. U.S.A. 71, 3474–3478 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GOZES, I., LITTAUER, U. Tubulin microheterogeneity increases with rat brain maturation. Nature 276, 411–413 (1978). https://doi.org/10.1038/276411a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276411a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing