Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temperature-dependent X-ray diffraction as a probe of protein structural dynamics

Abstract

X-ray diffraction at four temperatures from 220 to 300 K coupled with crystallographic refinement yields the mean-square displacements and conformational potentials of all 1,261 non-hydrogen atoms of metmyoglobin. The results are interpreted to indicate a condensed core around the haem, semi-liquid regions towards the outside and a possible pathway for ligands. It is concluded that X-ray diffraction can provide the spatial distribution of the dynamic features of a protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Careri, G. in Quantum Statistical Mechanics in the Natural Sciences (eds Kursunoglu, B., Mintz, S. L. & Widmayer, S. M.) 15–35 (Plenum, New York, 1974).

    Book  Google Scholar 

  2. Careri, G., Fasella, P. & Gratton, E. Crit. Rev. Biochem. 3, 141–164 (1975).

    Article  CAS  Google Scholar 

  3. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I. C. Biochemistry 14, 5355–5373 (1975).

    Article  CAS  Google Scholar 

  4. Alberding, N. et al. Biochemistry 17, 43–51 (1978).

    Article  CAS  Google Scholar 

  5. Lakowicz, J. R. & Weber, G. Biochemistry 12, 4171–4179 (1973).

    Article  CAS  Google Scholar 

  6. Munro, I. M., Pecht, I. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 76, 56–60 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Jones, W. C., Jr, Rothgeb, T. M. & Gurd, F. R. N. J. biol. Chem. 251, 7452–7460 (1976).

    CAS  PubMed  Google Scholar 

  8. Wüthrich, K. & Wagner, G. Trends biochem. Sci. 3, 227–230 (1978); Nature 275, 248 (1978).

    Article  Google Scholar 

  9. Williams, R. J. P. Proc. R. Soc. B200, 353–389 (1978).

    ADS  CAS  Google Scholar 

  10. Englander, S. W., Downer, N. W. & Teitelbaum, H. A. Rev. Biochem. 41, 903–924 (1972).

    Article  CAS  Google Scholar 

  11. Woodward, C. K. & Rosenberg, A. J. biol. Chem. 246, 4105–4113 (1975).

    Google Scholar 

  12. Landau, L. D. & Lifshitz, E. M. Statistical Physics (Pergamon, London, 1958).

    MATH  Google Scholar 

  13. Cooper, A. Proc. natn. Acad. Sci. U.S.A. 73, 2740–2741 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Lifshitz, I. M. Soviet Phys. JEPT 28, 1280–1286 (1969).

    ADS  Google Scholar 

  15. McCammon, J. A., Gelin, B. R. & Karplus, M. Nature 267, 585–590 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Willis, B. T. M. & Pryor, A. W. Thermal Vibrations in Crystallography (Cambridge University Press, 1975).

    Google Scholar 

  17. Cyvin, S. J. Molecular Vibrations and Mean Square Amplitudes (Elsevier, Amsterdam, 1968).

    Google Scholar 

  18. Lipkin, H. J. Ann. Phys. 26, 115–121 (1964).

    Article  ADS  Google Scholar 

  19. Dash, J. G., Johnson, D. P. & Visscher, W. M. Phys. Rev. 168, 1087–1094 (1968).

    Article  ADS  CAS  Google Scholar 

  20. Singwi, K. S. & Sjolander, A. Phys. Rev. 120, 1093–1102 (1960).

    Article  ADS  Google Scholar 

  21. Douzou, P., Hui Bon Hoa, G. & Petsko, G. A. J. molec. Biol. 96, 367–380 (1975).

    Article  CAS  Google Scholar 

  22. Petsko, G. A. J. molec. Biol. 96, 381–392 (1975).

    Article  CAS  Google Scholar 

  23. Wyckoff, H. W. et al. J. molec. Biol. 27, 563–578 (1967).

    Article  CAS  Google Scholar 

  24. North, A. C. T., Phillips, D. C. & Mathews, F. S. Acta crystallogr. A24, 351–359 (1968).

    Article  Google Scholar 

  25. Konnert, J. H. Acta crystallogr. A32, 614–617 (1976).

    Article  Google Scholar 

  26. Takano, T. J. molec. Biol. 110, 537–568 (1977).

    Article  CAS  Google Scholar 

  27. Parak, F. & Formanek, H. Acta crystallogr. A27, 573–578 (1971).

    Article  CAS  Google Scholar 

  28. Dwivedi, A., Pederson, T. & Debrunner, P. G. Proc. Mössbauer Conf., Kyoto (1978).

    Google Scholar 

  29. Sternberg, M. J. E., Grace, D. E. P. & Phillips, D. C. J. molec. Biol. 130, 231–253 (1979).

    Article  CAS  Google Scholar 

  30. Artymiuk, P. J. et al. Nature 280, 563–568 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Perutz, M. F. Scient. Am. 239, No. 6 92–125 (1978).

    Article  CAS  Google Scholar 

  32. Frauenfelder, H. in Tunneling in Biological Systems (eds B. Chance et al.) (Academic, New York, in the press).

  33. Gavish, B. Biophys. Struct. Mech. 4, 37–52 (1978).

    Article  CAS  Google Scholar 

  34. Saito, N., Okano, N., Iwayanagi, S. & Hideshima, T. Solid St. Phys. 14, 343–502 (1963).

    Article  CAS  Google Scholar 

  35. Jensen, L. H. in Crystallographic Computing Techniques (ed. F. R. Ahmed) (Munksgaard, Copenhagen, 1976).

    Google Scholar 

  36. McCammon, J. A., Wolynes, P. G. & Karplus, M. Biochemistry 18, 927–942 (1979).

    Article  CAS  Google Scholar 

  37. Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure (National Biomedical Research Foundation, Silver Spring, 1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frauenfelder, H., Petsko, G. & Tsernoglou, D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280, 558–563 (1979). https://doi.org/10.1038/280558a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280558a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing