Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The time course of cortical facilitation during cued shifts of spatial attention

Abstract

Adaptive behavior requires the rapid switching of attention among potentially relevant stimuli that appear in the environment. The present study used an electrophysiological approach to continuously measure the time course of visual pathway facilitation in human subjects as attention was shifted from one location to another. Steady-state visual evoked potentials (SSVEPs) were recorded to rapidly flickering lights at attended and unattended locations, and variations in SSVEP amplitude over time were calculated after a cue to shift attention. The build-up of cortical facilitation reflected in SSVEP amplitude was found to bear a close temporal relationship with the emergence of accurate target discriminations at the newly attended location.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of stimulus array and electrode positions, with SSVEP waveforms from one subject shown for the attended (boldline) and unattended (thin line) conditions recorded from contralateral occipito-temporal sites TO2 and TO1.
Figure 2: Representative time- and frequency-domain waveforms from a single subject.
Figure 3: Electrophysiological and behavioral indices of attentional switching.
Figure 4: Time course of SSVEP amplitude increases (moving window FFT functions) and percentage of correct target detections (with standard errors) in 144-ms bins plotted separately for the four subjects who showed the fastest switching of attention following the cue (bold line, open bars) and the four subjects showing the slowest switching time (thin line, solid bars).

Similar content being viewed by others

References

  1. Posner, M. I., Inhoff, A. W., Friedrich, F. J. & Cohen, A. Isolating attentional systems: a cognitive-anatomical analysis. Psychobiology 15, 107–121 (1987).

    Google Scholar 

  2. Treisman, A. Features and objects: the fourteenth Bartlett memorial lecture. Q. J. Exp. Psychol. 40, 201–237 (1988).

    Article  CAS  Google Scholar 

  3. Posner, M. I., Snyder, C. R. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol. 109, 160–174 (1980).

    Article  CAS  Google Scholar 

  4. Eriksen, C. W. & St. James, J. D. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40, 225–240 (1986).

    Article  CAS  Google Scholar 

  5. LaBerge, D. Attentional Processing: The Brain's Art of Mindfulness (Harvard Univ. Press, Cambridge, Massachusetts, 1995).

  6. Luck, S. J., Hillyard, S. A., Mouloua, M. & Hawkins, H. L. Mechanisms of visual-spatial attention: resource allocation or uncertainty reduction . J. Exp. Psychol. Hum. Percept. Perform. 22, 725–737 (1996).

    Article  CAS  Google Scholar 

  7. Cheal, M. L., Lyon, D. R. & Gottlob, L. R. A framework for understanding the allocation of attention in location-precued discrimination. Q. J. Exp. Psychol. 47, 699–739 (1994).

    Article  Google Scholar 

  8. Duncan, J., Ward, R. & Shapiro, K. Direct measurement of attentional dwell time in human vision. Nature 369, 313– 315 (1994).

    Article  CAS  Google Scholar 

  9. Sperling, G., Budiansky, J., Spivak, J. R. & Johnson, M. C. Extremely rapid visual search: the maximum rate of scanning letters for the presence of a numeral. Science 174, 307– 311 (1971).

    Article  CAS  Google Scholar 

  10. Stelmach, L. B., Campsall, J. M. & Herdman, C. M. Attentional and ocular movements. J. Exp. Psychol. Hum. Percept. Perform. 23, 823– 844 (1997).

    Article  Google Scholar 

  11. Shapiro, K., Driver, J., Ward, R. & Sorensen, R. E. Priming from the attentional blink: A failure to extract visual tokens but not visual types. Psychol. Sci. 8, 95–100 (1997).

    Article  Google Scholar 

  12. Shapiro, K. L., Arnell, K. M. & Raymond, J. E. The attentional blink. Trends Cog. Sci. 1, 291–296 ( 1997).

    Article  CAS  Google Scholar 

  13. Ward, R., Duncan, J. & Shapiro, K. The slow time-course of visual attention. Cog. Psychol. 30, 79–109 (1996).

    Article  CAS  Google Scholar 

  14. LaBerge, D., Carlson, R. L., Williams, J. K. & Bunney, B. G. Shifting attention in visual space: Tests of moving-spotlight models versus an activity-distribution model. J. Exp. Psychol. Hum. Percept. Perform. 23,1380–1392 ( 1997).

    Article  CAS  Google Scholar 

  15. Reeves, A. & Sperling, G. Attention gating in short-term visual memory. Psychol. Rev. 93,180– 206 (1986).

    Article  CAS  Google Scholar 

  16. Luck, S. J., Chellazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  17. Motter, B. C. Neural correlates of feature selective memory and pop-out in extrastriate area V4. J. Neurosci. 14, 2190– 2199 (1994).

    Article  CAS  Google Scholar 

  18. Motter, B. C. in The Attentive Brain (ed. Parasuraman, R.) 51– 69 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  19. Hillyard, S. A. & Anllo-Vento, L. Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acad. Sci. USA 95, 781–787 (1998).

    Article  CAS  Google Scholar 

  20. Mangun, G. R. Neural mechanisms of visual selective attention. Psychophysiology 32, 4–18 (1995 ).

    Article  CAS  Google Scholar 

  21. Hillyard, S. A., Vogel, E. K. & Luck, S. J. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Phil. Trans. R. Soc. Lond. B Biol. Sci. (in press).

  22. Hillyard, S. A. et al. Combining steady-state visual evoked potentials and fMRI to localize brain activity during selective attention. Hum. Brain Mapp. 5, 287–292 ( 1997).

    Article  CAS  Google Scholar 

  23. Morgan, S. T., Hansen, J. C. & Hillyard, S. A. Selective attention to stimulus location modulates the steady state visual evoked potential. Proc. Natl. Acad. Sci. USA 93, 4770–4774 ( 1996).

    Article  CAS  Google Scholar 

  24. Müller, M. M. et al. Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28 Hz range. Cog. Brain Res. 6, 249–261 ( 1998).

    Article  Google Scholar 

  25. Regan, D. in Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine 70–112 (Elsevier, New York, 1989).

    Google Scholar 

  26. Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proc. Natl. Acad. Sci. USA 95, 831– 838 (1998).

    Article  CAS  Google Scholar 

  27. Luck, S. J., Vogel, E. K. & Shapiro, K. L. Word meanings can be accessed but not reported during the attentional blink. Nature 383, 616– 618 (1996).

    Article  CAS  Google Scholar 

  28. Yamaguchi, S., Tsuchiya, H. & Kobayashi, S. Electroencephalographic activity associated with shifts of visuospatial attention. Brain 117, 553 –562 (1994).

    Article  Google Scholar 

  29. Clark, V. P., Fan, S. & Hillyard, S. A. Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum. Brain Mapp. 2, 170–187 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jon Hansen, Lourdes Anllo-Vento, Matt Marlow and Carlos Nava for technical advice and support. The work was supported by grants from ONR (N00014-93-I-0942), NIMH (MH-25594), NIH (NS 17778) and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias M. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Teder-Sälejärvi, W. & Hillyard, S. The time course of cortical facilitation during cued shifts of spatial attention. Nat Neurosci 1, 631–634 (1998). https://doi.org/10.1038/2865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing