Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oriented fibrin gels formed by polymerization in strong magnetic fields

Abstract

Fibrinogen is a soluble plasma protein which, after cleavage by the specific proteolytic enzyme thrombin, polymerizes to form the filamentous fibrin network during blood clotting (see refs 1 and 2 for reviews). Fibrinogen has a molecular weight of 340,000 and is composed of two identical halves, each containing three peptide chains designated Aα, Bβ and γ. Fibrin monomers are produced by thrombin which releases the small negatively charged fibrinopeptides A and B. The overall shape of the fibrinogen molecule has not been unequivocally established1,2. The trinodular, elongated (450 Å long) structure proposed by Hall and Slayter3 is the most widely accepted model and it has obtained additional support from recent work4–6. Fibrin monomers are also about 450 Å long7 and in fibres they probably have a half-staggered arrangement along the axis7,8. The fibres are an assembly of protofibrils whose structure and packing are not reliably known. We report here that highly oriented fibrin gels are formed when polymerization takes place slowly in a strong magnetic field. It is shown that the protofibrils pack into a three-dimensional crystalline lattice. We introduce magnetically induced birefringence as a potential tool for studying polymerization and briefly speculate on the applications of strong magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Doolittle, R. F. Adv. Protein Chem. 27, 1–109 (1973).

    Article  CAS  Google Scholar 

  2. Doolittle, R. F. in The Plasma Proteins Vol. 2 (ed. Putnam, F. W.) 109–161 (Academic, New York, 1975).

    Book  Google Scholar 

  3. Hall, C. E. & Slayter, H. S. J. biophys. biochem. Cytol. 5, 11–15 (1959).

    Article  CAS  Google Scholar 

  4. Fowler, W. E. & Erickson, H. P. J. molec. Biol. 134, 241–249 (1979).

    Article  CAS  Google Scholar 

  5. Tooney, N. M. & Cohen, C. J. molec. Biol. 110, 363–385 (1977).

    Article  CAS  Google Scholar 

  6. Weisel, J. W., Warren, G. S. & Cohen, C. J. molec. Biol. 126, 159–183 (1978).

    Article  CAS  Google Scholar 

  7. Krakow, W., Endres, G. F., Siegel, B. M. & Scheraga, H. A. J. molec. Biol. 71, 95–103 (1972).

    Article  CAS  Google Scholar 

  8. Ferry, J. D. Proc. natn. Acad. Sci. U.S.A. 38, 566–569 (1952).

    Article  ADS  CAS  Google Scholar 

  9. Worcester, D. L. Proc. natn. Acad. Sci. U.S.A. 75, 5475–5477 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Stryer, L., Cohen, C. & Langridge, R. Nature 197, 793–794 (1963).

    Article  ADS  CAS  Google Scholar 

  11. Conio, G., Dondero, G., Troglia, C., Trefiletti, V. & Patrone, E. Biopolymers 14, 2363–2372 (1975).

    Article  CAS  Google Scholar 

  12. Karges, H. E. & Kühn, K. Eur. J. Biochem. 14, 94–97 (1970).

    Article  CAS  Google Scholar 

  13. Hermans, J. Proc. natn. Acad. Sci. U.S.A. 76, 1189–1193 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Bailey, K., Astbury, W. T. & Rudall, K. M. Nature 151, 716–717 (1943).

    Article  ADS  CAS  Google Scholar 

  15. Mihalyi, E. Biochim. biophys. Acta 102, 487–499 (1965).

    Article  CAS  Google Scholar 

  16. Budzynski, A. Z. Biochim. biophys. Acta 229, 663–671 (1971).

    Article  CAS  Google Scholar 

  17. Torbet, J. & Maret, G. Biopolymers (submitted).

  18. Geacintov, N. E., Van Nostrand, R., Pope, M. & Tinkel, J. B. Biochim. biophys. Acta 226, 486–491 (1972).

    Article  Google Scholar 

  19. Saibil, H. R., Chabre, M. & Worcester, D. J. Nature 262, 266–270 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Neugebauer, D. -Ch., Blaurock, A. E. & Worcester, D.L. FEBS Lett. 78, 31–35 (1977).

    Article  CAS  Google Scholar 

  21. Torbet, J. & Maret, G. J. molec. Biol. 134, 843–845 (1979).

    Article  CAS  Google Scholar 

  22. Maret, G. et al. in Nonlinear Behaviour of Molecules, Atoms and Ions in Electric, Magnetic or Electromagnetic Fields (Elsevier, Amsterdam, 1979).

    Google Scholar 

  23. Cser, F. J. Phys. théor. appl. 40, 459–470 (1979.

    Google Scholar 

  24. Perplies, E., Ringsdorf, H. & Wendorff, J. H. Polym. Lett. Ed. 13, 243–246 (1975).

    Article  CAS  Google Scholar 

  25. Clough, S. B., Blumstein, A. & Hsu, E. C. Macromolecules 9, 123–127 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Ibel, K. J. appl. Crystallogr. 9, 630–643 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torbet, J., Freyssinet, JM. & Hudry-Clergeon, G. Oriented fibrin gels formed by polymerization in strong magnetic fields. Nature 289, 91–93 (1981). https://doi.org/10.1038/289091a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289091a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing