Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a small heat-shock protein

Abstract

The principal heat-shock proteins that have chaperone activity (that is, they protect newly made proteins from misfolding) belong to five conserved classes: HSP100, HSP90, HSP70, HSP60 and the small heat-shock proteins (sHSPs). The sHSPs can form large multimeric structures and have a wide range of cellular functions, including endowing cells with thermotolerance in vivo1,2 and being able to act as molecular chaperones in vitro3,4,5,6,7,8; sHSPs do this by forming stable complexes with folding intermediates of their protein substrates9,10. However, there is little information available about these structures or the mechanism by which substrates are protected from thermal denaturation by sHSPs. Here we report the crystal structure of a small heat-shock protein from Methanococcus jannaschii, a hyperthermophilic archaeon. The monomeric folding unit is a composite β-sandwich in which one of the β-strands comes from a neighbouring molecule. Twenty-four monomers form a hollow spherical complex of octahedral symmetry, with eight trigonal and six square ‘windows’. The sphere has an outer diameter of 120 Å and an inner diameter of 65 Å.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of HSP16.5 with other small heat-shock proteins and α-crystallins.
Figure 2: Representative region of the experimental electron density map contoured at 1.2σ.
Figure 3: Overall structure of sHSP.
Figure 4: Subunit interaction of sHSP.

Similar content being viewed by others

References

  1. Schirmer, E. C., Lindquist, S. & Vierling, E. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6, 1899–1909 (1994).

    Article  CAS  Google Scholar 

  2. van den IJssel, P. R., Overkamp, P., Knauf, U., Gaestel, M. & de Jong, W. W. Alpha A-crystallin confers cellular thermoresistance. FEBS Lett. 355, 54–56 (1994).

    Article  CAS  Google Scholar 

  3. Horwitz, J. Alpha-crystallin can function as a molecular chaperone. Proc. Natl Acad. Sci. USA 89, 10449–10453 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Jacob, U., Gaestel, M., Engel, K. & Buchner, J. Small heat shock proteins are molecular chaperones. J.Biol. Chem. 268, 1517–1520 (1993).

    Google Scholar 

  5. Merck, K. B. et al. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J. Biol. Chem. 268, 1046–1052 (1993).

    CAS  PubMed  Google Scholar 

  6. Lee, G. J., Pokala, N. & Vierling, E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270, 10432–10438 (1995).

    Article  CAS  Google Scholar 

  7. Chang, Z. et al. Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271, 7218–7223 (1996).

    Article  CAS  Google Scholar 

  8. Jaenicke, R. & Creighton, T. E. Junior chaperones. Curr. Biol. 3, 234–235 (1993).

    Article  CAS  Google Scholar 

  9. Ehrnsperger, M., Graber, S., Gaestel, M. & Buchner, J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221–229 (1997).

    Article  CAS  Google Scholar 

  10. Lee, G. J., Roseman, A. M., Saibil, H. R. & Vierling, E. Asmall heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659–671 (1997).

    Article  CAS  Google Scholar 

  11. Kim, K. K., Yokota, H., Kim, S.-H. Purification, crystallization and preliminary X-ray crystallographic analysis of small heat shock protein homolog from Methanococcus jannaschii. J. Struct. Biol. 121, 76–80 (1998).

    Article  CAS  Google Scholar 

  12. Tseng, T. S. et al. Two rice (Oryza sativa) full-length cDNA clones encoding low-molecular-weight heat-shock proteins. Plant Mol. Biol. 18, 963–965 (1992).

    Article  CAS  Google Scholar 

  13. Kim, R., Kim, K. K., Yokota, H. & Kim, S.-H. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl Acad. Sci. USA(in press).

  14. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Leroux, M., Melki, R., Gordon, B., Batelier, G. & Candido, E. P. M. Structure–function studies on small heat shock protein oligometric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272, 24646–24656 (1997).

    Article  CAS  Google Scholar 

  16. Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L. & Deisenhofer, J. The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature 379, 37–45 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Caspers, G.-J., Leunissen, J. A. M. & de Jong, W. W. The expanding small heat-shock protein family, and structural predictions of the conserved “α-crystallin domain”. Mol. Evol. 40, 238–248 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Yeh, C. H. et al. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl Acad. Sci. USA 94, 10967–10972 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Plater, M. L., Goode, D. & Crabbe, M. J. C. Effects of site-directed mutations on the chaperone-like activity of αB-crystallin. J. Biol. Chem. 271, 28558–28566 (1996).

    Article  CAS  Google Scholar 

  20. Merck, K. B. et al. Comparison of the homologous carboxy-terminal domain and tail of alpha-crystallin and small heat shock protein. Mol. Biol. Rep. 18, 209–215 (1993).

    Article  CAS  Google Scholar 

  21. Leroux, M., Ma, B. J., Batelier, G., Melki, R. & Candido, E. P. M. Unique structural features of a novel class of small heat shock proteins. J. Biol. Chem. 272, 12847–12853 (1997).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, (1993)).

    Google Scholar 

  23. Cowtain, K. D. & Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D 49, 148–157, (1993).

    Article  Google Scholar 

  24. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Brünger, A. T. X-PLOR version 3.1 (Yale Univ. Press, New Haven, CT, (1993)).

    Google Scholar 

  26. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thronton, J. M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Google Scholar 

  27. Genetics Computer Group Program manual for the GCG package, version (GCG, Madison, WI, (1991)).

Download references

Acknowledgements

We thank D. King for doing the electrospray mass spectrometry; H. Yokota for help with protein preparation, D. Boisvert for critical discussion of the manuscript, and R. Sweet at the NSLS for data collection. This work was funded by the US Department of Energy (R.K. and S.-H.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hou Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Kim, R. & Kim, SH. Crystal structure of a small heat-shock protein. Nature 394, 595–599 (1998). https://doi.org/10.1038/29106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29106

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing