Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orientation of spin labels attached to cross-bridges in contracting muscle fibres

Abstract

Electron micrographs showing different cross-bridge orientations in different states of muscle fibres, and X-ray diffraction patterns indicating axial cross-bridge disorder in contracting muscle first suggested that force generation in the contracting muscle involved a change in orientation of the myosin heads that form cross-bridges between thick and thin filaments1,2. This has been supported by subsequent work; the myosin molecule has the required flexibility for changes in orientation3,4. The orientation of muscle tryptophans and of probes attached to the myosin heads of permeable muscle fibres depends on the state of the muscle5–9. Recently, fluorescence polarization fluctuations and time-resolved X-ray diffraction patterns have suggested that cross-bridges of a contracting muscle can rotate10,11. We have used electron paramagnetic resonance (EPR) spectroscopy to monitor the orientation of spin labels attached specifically to a reactive sulphydryl on the myosin heads in glycerinated rabbit psoas skeletal muscle. Previously, it has been shown that the paramagnetic probes are highly ordered in rigor muscle, with a nearly random angular distribution in relaxed muscle12. We show here that during the generation of isometric tension, 80% of the probes display a random angular distribution as in relaxed muscle while the remaining 20% are highly oriented at the same angle as found in rigor muscle. These findings indicate that a domain of the myosin head does not change orientation during the power stroke of the contractile interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reedy, M. K., Holms, K. C. & Tregear, R. T. Nature 207, 1276–1280 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Huxley, H. E. Science 114, 1356–1366 (1969).

    Article  ADS  Google Scholar 

  3. Mendelson, R. A., Morales, M. F. & Botts, J. Biochemistry 12, 2250–2255 (1973).

    Article  CAS  Google Scholar 

  4. Thomas, D. D., Seidel, J. C., Gergely, J. & Hyde, J. S. Proc. natn. Acad. Sci. U.S.A. 72, 1729–1733 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Aronson, J. F. & Morales, M. F. Biochemistry 8, 4517–4522 (1969).

    Article  CAS  Google Scholar 

  6. Dos Remedios, C. G., Millikan, R. G. C. & Morales, M. F. J. gen. Physiol. 59, 103–120 (1972).

    Article  CAS  Google Scholar 

  7. Nihei, T., Mendelson, R. A. & Botts, J. Biophys. J. 14, 236–242 (1974).

    Article  CAS  Google Scholar 

  8. Borjedo, J. & Putnam, S. Biochim. biophys. Acta 459, 578–595 (1977).

    Article  Google Scholar 

  9. Yanagida, T. J. molec. Biol. 146, 539–560 (1981).

    Article  CAS  Google Scholar 

  10. Borjedo, J., Putman, S. & Morales, M. F. Proc. natn. Acad. Sci. U.S.A. 76, 6346–6350 (1979).

    Article  ADS  Google Scholar 

  11. Huxley, H. E. et al. Proc. natn. Acad. Sci. U.S.A. 78, 2297–2301 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Thomas, D. D. & Cooke, R. Biophys. J. 32, 891–906 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Thomas, D. D., Ishiwata, S., Seidel, J. C. & Gergely, J. Biophys. J. 32, 873–980 (1980).

    Article  CAS  Google Scholar 

  14. Thomas, D. D., Barnett, V. A., Wendt, C. H. & Lindahl, K. D. Biophys. J. (submitted).

  15. Barnett, V. A. & Thomas, D. D. J. molec. Biol. (submitted).

  16. Goldman, Y. E. & Simmons, R. M. J. Physiol., Lond. 269, 55P (1977).

    CAS  PubMed  Google Scholar 

  17. Haselgrove, J. & Huxley, H. E. J. molec. Biol. 77, 549–568 (1973).

    Article  CAS  Google Scholar 

  18. Curtin, N. A., Gilber, C., Kretzschmar, K. M. & Wilkie, D. R. J. Physiol., Lond. 238, 455–472 (1974).

    Article  CAS  Google Scholar 

  19. Arata, T. & Shimizu, H. J. molec. Biol. 151, 411–437 (1981).

    Article  CAS  Google Scholar 

  20. Huxley, A. F., Simmons, R. M. Nature 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  21. Barden, J. A. & Mason, P. Science 199, 212–213 (1978).

    Article  Google Scholar 

  22. Podolsky, R. J. & Nolan, A. C. Cold Spring Harb. Symp. Quant. Biol. 37, 661–668 (1972).

    Article  Google Scholar 

  23. Eisenberg, E., Hill, T. L. & Chen, Y. Biophys. J. 29, 195–227 (1980).

    Article  CAS  Google Scholar 

  24. Cooke, R. Nature 294, 570–571 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Harrington, W. F. Proc. natn. Acad. Sci. U.S.A. 68, 685–689 (1971).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, R., Crowder, M. & Thomas, D. Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature 300, 776–778 (1982). https://doi.org/10.1038/300776a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300776a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing