Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inducible repair of oxidative DNA damage in Escherichia coli

Abstract

Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli1,2. Peroxides yield transient radical species that can damage DNA3 and cause mutations4. Such partially reduced oxygen species are occasionally released during cellular respiration2 and are generated by lethal and mutagenic ionizing radiation5. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions2,3. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCormick, J. P., Fischer, J. R., Pachlatko, J. P. & Eisenstark, A. Science 191, 468–469 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Fridovich, I. Science 201, 875–880 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Demple, B. & Linn, S. Nucleic Acids Res. 10, 3781–3789 (1982).

    Article  CAS  Google Scholar 

  4. Levin, D. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7445–7449 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Repine, J. E. et al. Proc. natn. Acad. Sci. U.S.A. 78, 1001–1003 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Samson, L. & Cairns, J. Nature 267, 281–283 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Witkin, E. Bact. Rev. 40, 869–907 (1976).

    CAS  Google Scholar 

  8. Ananthaswamy, H. N. & Eisenstark, A. J. Bact. 130, 187–191 (1977).

    CAS  PubMed  Google Scholar 

  9. Carlsson, J. & Carpenter, V. S. J. Bact. 142, 319–321 (1980).

    CAS  PubMed  Google Scholar 

  10. Maenhaut-Michel, G. & Caillet-Fauquet, P. Molec. gen. Genet. 188, 143–148 (1982).

    Article  CAS  Google Scholar 

  11. Gregory, E. M. & Fridovich, I. J. Bact. 114, 543–548 (1973).

    CAS  PubMed  Google Scholar 

  12. Richter, H. E. & Loewen, P. C. Biochem. biophys. Res. Commun. 100, 1039–1046 (1981).

    Article  CAS  Google Scholar 

  13. Rosner, J. L. Virology 48, 679–689 (1972).

    Article  CAS  Google Scholar 

  14. Evensen, G. & Seeberg, E. Nature 296, 773–775 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Bresler, S. E., Verbenko, V. N. & Kalinin, V. L. Genetika 16, 1753–1763 (1980).

    CAS  PubMed  Google Scholar 

  16. Demple, B. & Linn, S. Nature 287, 203–208 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Breimer, L. & Lindahl, T. Nucleic Acids Res. 8, 6199–6211 (1980).

    Article  CAS  Google Scholar 

  18. Demple, B., Halbrook, J. & Linn, S. J. Bact. 153, 1079–1082 (1983).

    CAS  PubMed  Google Scholar 

  19. Jeggo, P., Defais, M., Samson, L. & Schendel, P. Molec. gen. Genet. 157, 1–9 (1977).

    Article  CAS  Google Scholar 

  20. Wickner, W., Schekman, R., Geider, K. & Kornberg, A. Proc. natn. Acad. Sci. U.S.A. 70, 1764–1767 (1973).

    Article  ADS  CAS  Google Scholar 

  21. Beers, R. F. Jr & Sizer, I. W. J. biol. Chem. 195, 133–140 (1952).

    CAS  PubMed  Google Scholar 

  22. Heikkila, R. E. & Cabbat, F. Analyt. Biochem. 75, 356–362 (1976).

    Article  CAS  Google Scholar 

  23. Lowry, O., Rosebrough, N., Farr, A. & Randall, R. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  24. Miller, J. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demple, B., Halbrook, J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304, 466–468 (1983). https://doi.org/10.1038/304466a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304466a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing